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Part |: Transformer




Sequence data and sequence models




Sequence data

A series of data points whose points reliant on each other
e Length can be varied
e Positions matter

.. “The quick-b;'own fox jumped
Speech recognition — WW over the lazy dog.”

_P_ 0 -
Music generation —— —— i

1 o
Sentiment classification HHeE€ &5 DOVINETHo [ie **%i\(

in this movie.”

DNA sequence analysis —=> AGCCCCTGTGAGGAACTAG AGCCCCTGTGAGGAACTAG

Machine translation Voulez-vous chanter avec Do you want to sing with
moi? me?

Video activity recognition G &8 Gt % s Running

Name entity recognition _. Yesterday, Harry Potter Yesterday, Harry Potter
met Hermione Granger. met Hermione Granger.
Andrew Ng




Problem of Standard Networks

Concatenated ; j Concatenated
vector i ; vacksr

e|nputs, outputs can be different lengths in different examples.
eRelations between positions are not well reflected




RNN comes as a rescue
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RNN: an architecture tailored for sequence data:

1. Doesn't depend on data length

2. Take advantage of past information

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. Mcclelland (Eds.), Parallel distributed processing: Explorations
in the microstructure of cognition, Volume 1: Foundations (pp. 318-362). MIT Press




RNN Revision

one to one one to many




Seg2seq and Attention




Intuition

Take machine translation task as an example: human would first read some
parts of the text and then start to do the translation

The cat likes to eat pizza el gato le gusta comer pizza

—




Seq2Seq architecture

input output

Decoder

Encoder | "code"

<eos>

toi di hoc

context
vector

0000
0000

0000

school <eos> <bos>  tbi di hoc

Encoder Decoder

NLP researchers also employ that
idea into designing a structure
dubbed as Sequence-to-Sequence
(Seg2Seq), which extends
AutoEncoder architecture

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel,
R., Urtasun, R., Torralba, A., & Fidler, S.
(2015). Skip-thought vectors. In C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, & R. Garnett
(Eds.), Advances in neural information
processing systems. Curran Associates, Inc

Sutskever, I., Vinyals, O., & Le, Q. V. (2014).
Sequence to sequence learning with neural
networks. Advances in neural information
processing systems, 27

12



Seq2Seq: The bottle neck problem

Encoding of the
source sentence.
This needs to capture all
information about the
source sentence.
Information bottleneck!
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il a m’ entarté
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Source sentence (input)

Encoder RNN

Target sentence (output)
A

hit me with
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NNY 49p029(q




Seq2Seq with attention

dot product

scores
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entarté <START>




Seq2Seq with attention
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distribution

scores

RNN

On this decoder timestep,
we’re mostly focusing on the
first encoder hidden state
(”he”)

Take softmax to turn the
scores into a probability
distribution

entarté <START>

NNY 19p023(




Seq2Seq with attention
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scores

RNN

Attention
output

entarté

Use the attention distribution to take
a weighted sum of the encoder
hidden states.

The attention output mostly contains
information from the hidden states
that received high attention.

NNY 19p023Q




Seq2Seq with attention

Attention
output

Concatenate attention output
with decoder hidden state,
then use to compute as
before
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Seq2Seq with attention

Attention
output
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Decoder RNN
r—N

Attention
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INPUT OUTPUT
j : THE
— —
Je suis étudiant O/ TRANSFORMER [I am a student]

wuww[l am a studch

( M)

ENCODERS DECODERS

— =

INPUT ‘ Je  suis CLud\am’

“Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).
Attention is all you need. In |. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R.
Garnett (Eds.), Advances in neural information processing systems. Curran Associates, Inc




OUTPUT{I am a student}

*

ENCODER > DECODER
4 L)
ENCODER DECODER
4 4
ENCODER DECODER
4 L)
ENCODER DECODER
4 L)
ENCODER DECODER
4 L)

ENCODER DECODER
\

- T

~

INPUT [Je suis étudiant]




Inside an Encoder Block

Position
Encoding

Self-

attention Position-wise

Feed Forward
Transformer Network
Encoders

Multi-head
Positional self-attention Layer
Encodinq Residual Normalization

Connections

Inputs




Scaled Dot Product Attention

Memory 1

T ou [ Matvul |
VaIues! ! ! |%| f Yy
| |

Attention [ SoftMax ]

Keysi i i |j Query
N Mask (opt.)

Scale

. QKT
Attention(Q, K, V) = softmax |4
Vdy,




Scaled Dot Product Attention

Memory

@| es! ! !\ |%|Output
|

Attention |

Attention

“iid e

. QKT
Attention(Q, K, V) = softmax |4
Vdy

entarté

<START




Scaled Dot Product Attention

Memory

Atten

distribution

ttention Attention
scores

Wiii?ﬁ\\\

Attention(Q, K,V) = softmax V
\/d_k

Encoder
RNN

entarté <START




Scaled Dot Product Attention

Memory

@| es! ! !\ |%|Output
|

Attention |

distribution

-4ib 8-

RNN-based Seq2Seq:
- Keys and Values are the same
- Queries are provided from
encoder

Encoder Attention Attention
RNN scores

entarté <START




Self-Attention in Transformer

® Attention maps a query and a set of key-value pairs to an

output
®* query, keys, and output are all vectors

. i Use matrices W2, WX and
WV to project input into
% - guery, key and value vectors

k

k,

[ v,

Keys

Queries 9
v

1
1
Values 1

Attention(Q, K, V) = softmax (Q_ d, is the dimension of
key vectors




Self-Attention

Layeﬁ\VS v Attention:| Input - Input 5

b 4

The_
animal_
didn_

t

street_
because_
it

too_

Image source: https://jalammar.github.io/illustrated-transformer/




Input Thinking Machines

Embedding x: [ x. [T
Queries L] o [T

Keys @ [DI . [
Values V1 Djj V2 Djj

Score gie ki=112

Divide by 8 ( Vd) ) 14
Softmax

Softmax
X
Value

Sum




ATTENTION HEAD #0

Thinking
Machines

Qo

W@

X

ATTENTION HEAD #1

Q4

K

Vi

31




Multi-Head Attention

Multi-Head Attention
X,

|

C
e Head #0 Head #1 Head #7

eV | | N | | e
- I T
1 L

e e
| Linear 'J' Lmear'.] Lin 1

K Q 1
Use a weight

matrix W° Linear Projection




1) This is our 2) We embed
input sentence* each word*

X

Thinking
Machines

* In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

R

3) Split into 8 heads.
We multiply X or
R with weight matrices

W@

W@
WK Qq

w-Q
WK Q7

s

E;;L‘W% , QoK
0 [

A F:m K

4) Calculate attention
using the resulting
Q/K/V matrices

0
Vo

K7

V7

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix W° to
produce the output of the layer

33




Position Encoding

* Position Encoding is used to make use of the order of the
sequence
* Since the model contains no recurrence and no convolution

* In Vawasni et al., 2017, authors used sine and cosine functions of
different frequencies

. pos
PEpos,2i) = Sm( 20 >
10000%modet

pos
PE(pos2i+1) = COS( 2 )
10000%modet

* pos is the position and i is the dimension
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ENCODER #0

EMBEDDING
WITH TIME

SGNAL i [T [ 1] [T

POSITIONAL t l—]——[—ﬁl t l—ljflj

ENCODING

EMBEDDINGS  x: [ | | []

Je étudiant

POSITIONAL 1 1 Y78 0.0001 1 XM 0.0002| -0.42
ENCODING
+

* +

EMBEDDINGS  x: [ [ [ [] x: [

Je étudiant




ENCODER #1

& A
C,( Add & Normalize )\
- ( Feed Forward ) ( Feed Forward )
s o . 4
z: z; [
A Add & Normalize A
X
, > LayerNorm( - )
- A A
: D:EI:I D:‘j:l
E ( Self-Attention )
. 4 A
POSITIONAL é é
ENCODING
X1|:|:|:|:| X2|:|:|:|:|
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Softmax
)
Linear
4
DECODER #2

Add & Normalize

Add & Normalize

L)

Encoder-Decoder Attention

Add & Normalize

Self-Attention

POSITIONAL
ENCODING

x: [

Thinking Machines




Vocab_Dist
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Scaled Dot-Product Attention
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FeedForward | * ’ I

_ Add & Norm |<.

Add & Norm |q 1
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Positional Encoding I—»(? * q_l Positional Encoding

I Embedding Embedding I




Decoding time step: 1@3 456

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

OUTPUT

t

Kencdec Vencdec ( Linear + Softmax

B t

ENCODERS

DECODERS

LT LLIT] [IL1T1]

Je suis étudiant

PREVIOUS
OUTPUTS



Part Il: Mamba




To save the princess: a state-based

approach




Where is the princess?




Input Sequence

5y o
3




Input Sequence

3




Where is the princess? Xy= N/A s(0) = (5,4)




Stat
e Transi
ansition
X0=
Xz_ﬂm=
x;:_) s(1) =((31’4)
s(2) = (4’;3




Stat
e Re
pre
sentation
X0=
_h(0) =
X,= N
xi:E h(1)=((3f4'7)
h(2) = (4'?6)
,3,5)




Next move? Xo=_ h(0) = (5,4,7)
X,=L h(1) = (4,4,6)
X,=D h(2) = (4,3,5)

| h(3)=?
= =




Nex
tm
ove f
rom
the
current stat
e
X2=D
h(2) =
Y (¥X3) =?




Let’s save the princess X,=D h(2) = (4,3,5)
h(3) = (4,3,4)
Y (~X3)=D

h_final = (1,1,0)

oo =




Introduction: State space model

SSMs are models used to describe these state representations and make
predictions of what their next state could be depending on some input

Input Output
(sequence) (sequence)

State Space Model
(SSM)




Introduction: State space model

Assumption: Dynamic system can be predicted from its state at time t by two
equations

Input Output
(sequence) SSM (sequence)
state equation

h'(t) = Ah(t) + Bx(t)
output equation

y(t) = Ch(t) + Dx(t)

=>Goal: Find h(t)




Introduction: State space model

State updat How the current How the input
state evolves over influences the state
time

How the current How the input
state translates to directly influences the
the output output




Introduction: State space model

lgnore the skip connection in the SSM

Input Output
(sequence) SSM (sequence)

state equation

h'(t) = Ah(t) + Bx(t)

r\j output equation

y(t) = Ch(t)

X(t)

skip connection

=>0Only work for continuous time representation?




SSMs Discretization

Discrete Signal Continuous Signal
. ) (Input) (Input)
With text input, need a Hold each value I

1 ) until we reach '
discrete model (discrete - 5 : s e ¥

> discrete)

2
Time t Time t

Zero order hold: Continous Signal Discrete Signal
Input: Hold value until (Output) (Output)

meet another sample E;r)(;m
Output: Sample \/\/ —>

discrete values




SSMs Discretization

Discrete SSM:

A = exp(AA)

B = (AA) (exp(AA)-I)- AB

state equation
hk = Ahk_1 + BXk
output equation

Y. = Ch,
Discrete SSM




SSM = RNN + Transformer?




Introduction

Problem with Transformers

Pros:
Can route information densely within a context window
Parallelizable training

Cons:

Slow inference: scale quadratically with sequence length

Can not model anything outside the context window




Introduction

Is RNN a solution?
Pros:

Inference is fast (linear) + can have large context length (in theory)
Cons:

Tend to forget information over time

Training can’t be done in parallel

Maarten

) &) &) E =9

compressed view
(hidden state)




Introduction

Can we leverage both pros of the two architectures?

Transformers

Training

Fast!
(parallelizable)

Slow...
(not parallelizable)

Inference

Slow...
(scales quadratically with sequence length)

Fast!

(scales linearly with sequence length)




The two views of SSMs

SSM: The RNN view => Fast inference

Timestep O Timestep 1

h, = I_-\ho+ Ex1

Timestep -1 e State of
does not exist so previous timestep

Ah

State of
can be ignored

current timestep

Timestep 2

State of
previous timestep

State of
current timestep




The two views of SSMs

SSM: The CNN view => Parallelizable training

ho = B.X'O
Yo = Cho = CEXO

h1 = Aho + Exl = Agxo + Exl
Vi = Chl = C(14_§x0 + Exl) = Clq_on + CExl

h2 = Ahl + Exz = A(/IEXO + Exl) + Exz = AZEXO + /TEX]_ + Exz
y, = Chy, = C(A%Bx, + ABx, + Bx,) = CA?Bx, + CABx, + CBx,

Kernel

Input

(x,)

Output
(y,)

CB
¢ Multiply

name

- lAum
En

y, = CABxO + CBx1

padding




The two views of SSMs

Continuous-time Recurrent or Convolutional

Discrétize
—_}

v efficient inference X unbounded context
X parallelizable training v parallelizable training




Introduction: State space model

Important property of CNN
and RNN representations:
Linear time invariant

All state space model
params are fixed for all time

steps

=> Static representation, not
content-aware

State Space Model

Convolutional
7 bg . .
ekl Training

s W
Rowm

o

WIKIPEDIA

The Free Encyclopedia

Inference

mode
My name is

—) Maarten




ht — th_l 1 Ext
ye = Chy

The matrix A: captures information from previous state
Need to be designed carefully

Random initialized A => poor performance
Use HiPPO matrix

2n+1)Y22k+1)Y2 ifn>k
Ar=—<n+1 itn=k.

0 ifn <k




HiPPO Matrix




HiPPO

Input Signal Reconstructed Signéi

HiPPO
(compress and small degration
reconstruct signal : of newer steps /
information) > 3

Exlarge degration
. of older steps
1 é

Timet




Introduction: State space model

Structured State Spaces for
Sequences (S4)

Continuous Long-Range Discrete

State Space ¥ Dependencies Representations
(HiPPO)

D}

@—w

8]

T

Training mode (convolutional)
Inference mode (recurrence)




The Mamba model




Mamba model: motivation

S4 still performs poorly on certain tasks

Selective Copying

given a comment on Twitter,
rewrite the comment by
removing all the bad words

Induction Heads
Few shot prompting:

IR e ! . {41 =2then 242 = 7"




Mamba model: motivation

Why?
Time Invariant: all params A, B, C, D are fixed for every tokens it generates
=> Can not choose which information it need to focus

But it could be done easily by Transformer: can attend to all previous
tokens when generating current one




Mamba model: Selective SSMs

o Incoporate the sequence length and batch size of the input by a MLP projection

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)

Input: x : (B,L,D) Input: x : (B,L,D)
Output: y : (B,L,D) Output: y : (B,L,D)
1: A : (D,N) « Parameter 1: A : (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
: B : (D,N) « Parameter : B:(B,LN) « sz(x)
: C : (D,N) « Parameter : C : (B,L,N) « so(x)
: A : (D) « 7 (Parameter) : A :(B,L,D) « t,(Parameter+s,(x))
: Z,E : (DA): discretize(A, A, B) y Z,E : (B&,&N) « discretize(A, A, B)
: ¥y« SSM(A, B,C)(x) : y <« SSM(A, B,C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
: return y : returny

sp(x) = Lineary(x), sc(x) = Lineary(x), sp(x) = Broadcastp(Linear;(x)). 7, = softplus




Mamba model: Selective SSMs

« Connection: Gating mechanism of RNNs is
an instance of selection mechanism in
Mamba

WhenN =1,A= -1,B=1s = Linear (x),
t = softplus

g; = o(Linear(x;))
hy =1 —g)hi_1 + g%,

~ When g; - 0:filter noise,
-~ When g is large: reset the state

Linear
projection

Sequence
transformation

Nonlinearity

(activation or
multiplication)




0123456
Mamba model: Selective SSMs

But now we can’t use parallel

convolution?

=> Improve with parallel scan

algorithm

Time complexity: O(N/T)

Parallel computation O(n/t)




- Normal
7 \\‘Load tensor from HBM to SRAM
-> compute -> save back to HBM
\ for each operations

vost time for copying

operations
/ e CUDA kernels -> one

Mamba model: Kernel fusion

High Bandwidth Memory (DRAM) (~

SRAM (~

Relatively slow

MB)

Relatively fast

(€15))




Mamba model: Recomputation

Normal training: Need to cache the outputs of forward steps to
perform backpropagation

— Need to save to HBM and copy back -> Slow

— Just recompute them during backpropagation!




Mamba model: Performance

Arch. Layer : Induction Heads Extrapolation

No gate S4 MHA-Absolute
No gate  S6 ' MHA-RoPE

MHA-xPos
H3 S4 H3
H3 Hyena Hyena
H3 S6

Mamba
Random
Mamba S4
Mamba Hyena

Train Length
LELBLELE v 1 IIIIIII3 L v I|II|II4
Mamba Mamba S6 10 10
Test Sequence Length

Accuracy

Table 1: (Selective Copying.) Table 2: (Induction Heads.) Models are trained on sequence length
Accuracy for combinations of architectures 2% = 256, and tested on increasing sequence lengths of 2° = 64 up to
and inner sequence layers. 2?° = 1048576. Full numbers in Table 11.




Mamba model: Performance

Scaling Laws on The Pile (Sequence Length 2048)
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Hyena

RWKV
Transformer
RetNet

H3++
Transformer++
Mamba

Figure 4: (Scaling Laws.) Models of size ~ 125M to ~ 1.3B parameters, trained on the Pile. Mamba scales better than all other
attention-free models and is the first to match the performance of a very strong “Transformer++" recipe that has now become
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FLOPs (log scale)

" 1020

standard, particularly as the sequence length grows.

Perplexity (log scale)

Scaling Laws on The Pile (Sequence Length 8192)

\

Hyena

RWKV
Transformer
RetNet

H3++
Transformer++
Mamba
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Thank you for your attention!
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