

From Transformer to Mamba: May the Princess be Saved

Quan Thanh Tho qttho@hcmut.edu.vn

HCMC, 8/2024

Assoc. Prof. Quan Thanh Tho Acting Dean Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology (HCMUT) Vietnam National University - Ho Chi Minh City <u>qttho@hcmut.edu.vn</u> <u>http://www.cse.hcmut.edu.vn/qttho/</u>

- BEng, HCMUT, Vietnam, 1998
- PhD, NTU, Singapore, 2006
- Research Interests: Artificial Intelligence, Natural Language Processing, intelligent systems, formal methods

Agenda

Part I : Transformer

- Sequence data and sequence models
- Seq2Seq and attention
- Transformer
- Part II: Mamba
- To save the princess: The state-based approach
- SMM = RNN + Transformer?
- Mamba model

Part I: Transformer

Sequence data and sequence models

Sequence data

A series of data points whose points reliant on each other

- Length can be varied
- Positions matter

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis -> AGCCCCTGTGAGGAACTAG

Machine translation

Video activity recognition

Voulez-vous chanter avec moi?

"There is nothing to like

in this movie."

Name entity recognition \rightarrow Yesterday, Harry Potter met Hermione Granger.

"The quick brown fox jumped over the lazy dog."

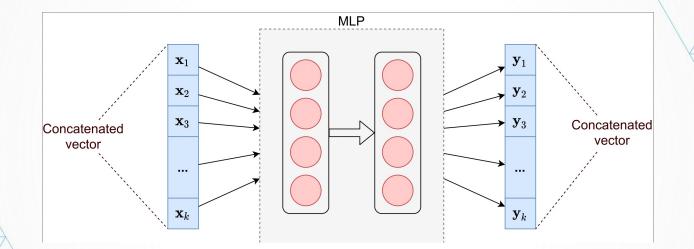
$$\star$$
 \checkmark \checkmark \checkmark \checkmark

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

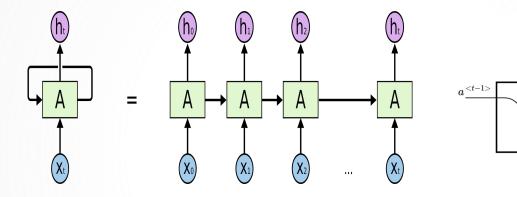
Yesterday, Harry Potter met Hermione Granger. Andrew Ng

Problem of Standard Networks



- •Inputs, outputs can be different lengths in different examples.
- Relations between positions are not well reflected

RNN comes as a rescue



RNN: an architecture tailored for sequence data:

- 1. Doesn't depend on data length
- 2. Take advantage of past information

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. Mcclelland (Eds.), *Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundations* (pp. 318–362). MIT Press

 $\hat{n}^{\langle t \rangle}$

softmax

tanh

 $x^{<t>}$

 $\rightarrow a^{<t>}$

RNN Revision many to many one to many many to one many to many one to one 4 ---

Seq2seq and Attention

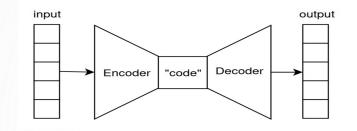
Intuition

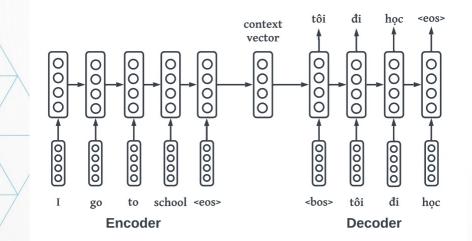
Take machine translation task as an example: human would first read some parts of the text and then start to do the translation

The cat likes to eat pizza

el gato le gusta comer pizza

Seq2Seq architecture



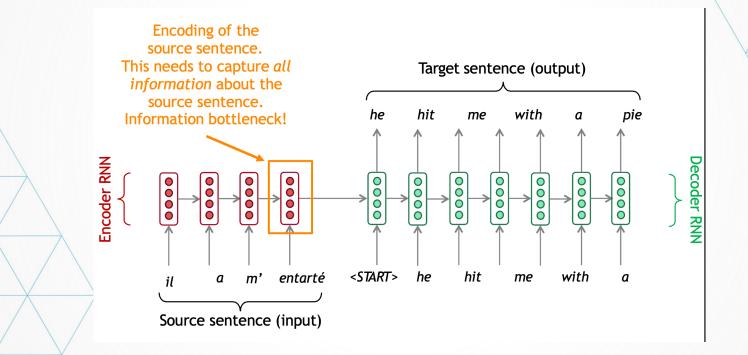


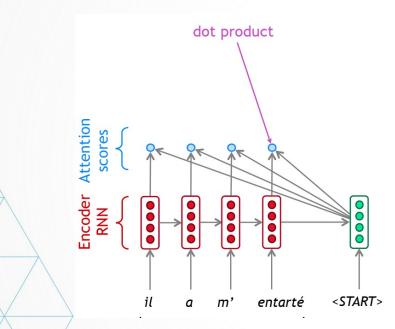
NLP researchers also employ that idea into designing a structure dubbed as Sequence-to-Sequence (Seq2Seq), which extends AutoEncoder architecture

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Skip-thought vectors. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), *Advances in neural information processing systems*. Curran Associates, Inc

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, 27

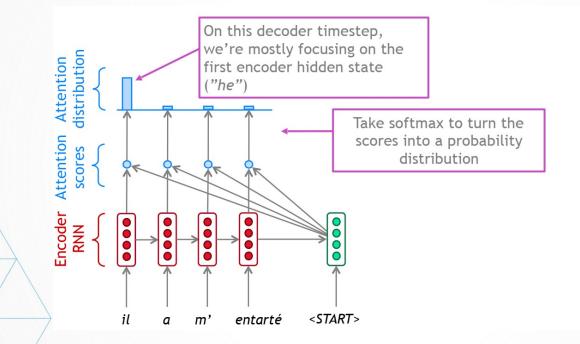
Seq2Seq: The bottle neck problem



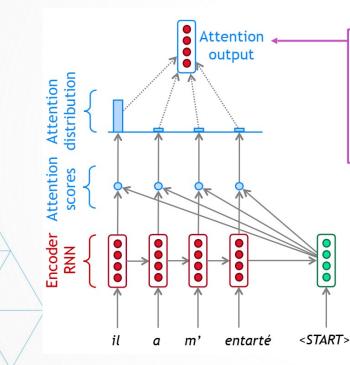


Decoder RNN

14

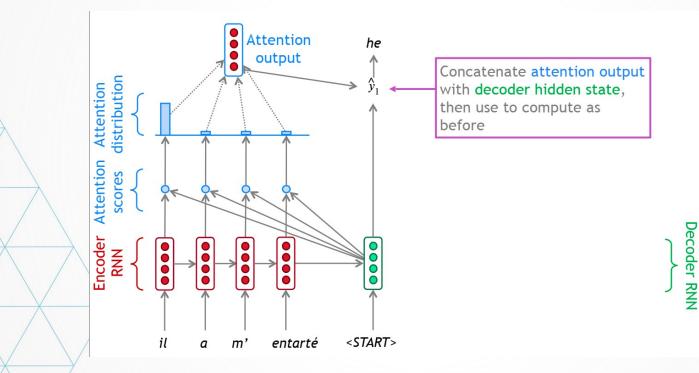


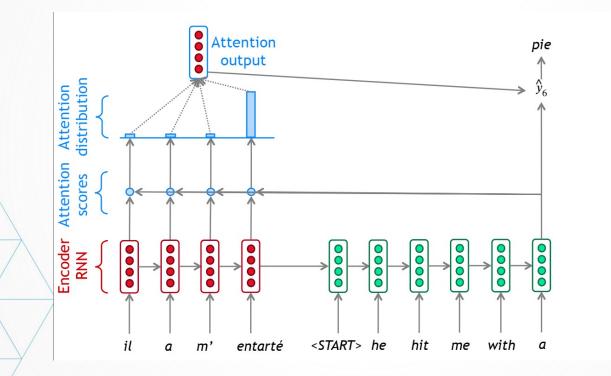
15



Use the attention distribution to take a weighted sum of the encoder hidden states.

The **attention output** mostly contains information from the **hidden states** that received **high attention**.

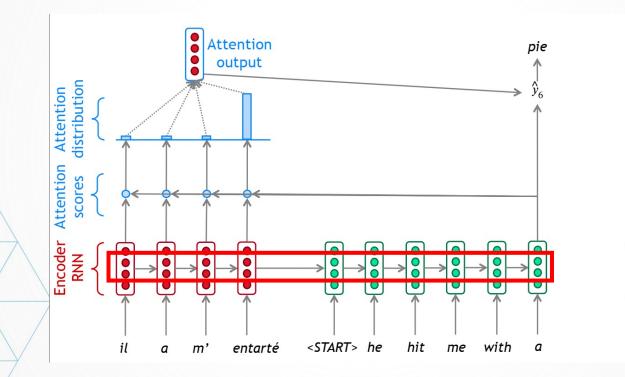




Decoder RNN

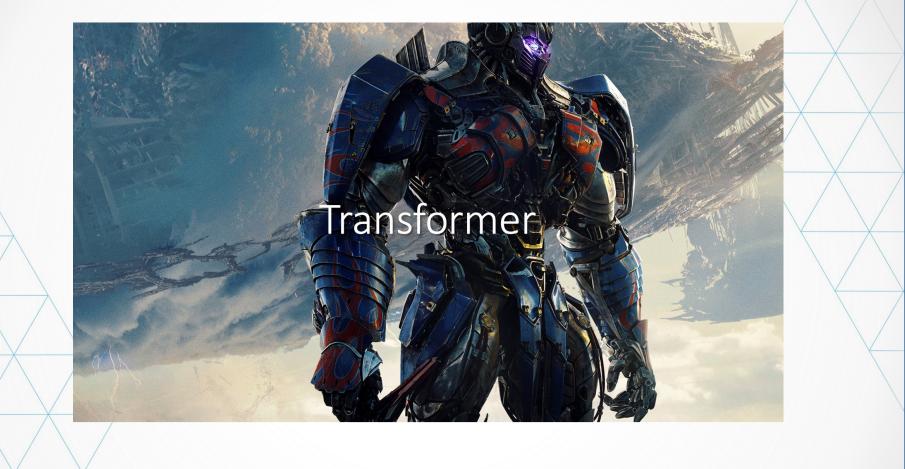
18

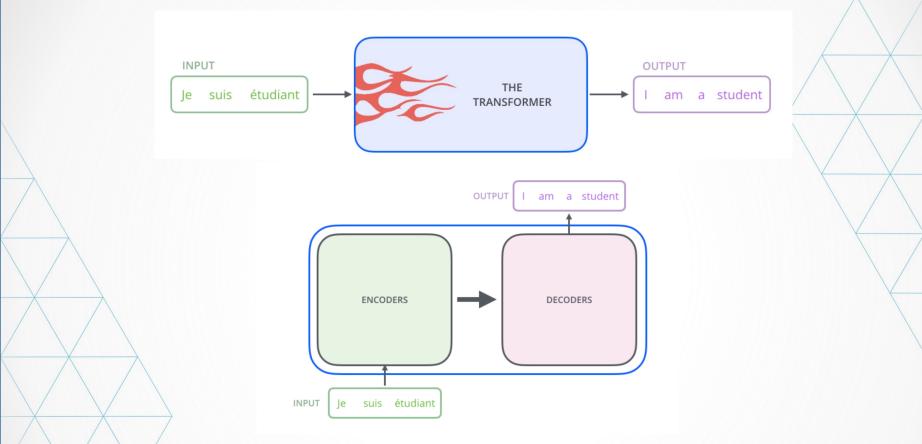
Seq2Seq with another bottleneck



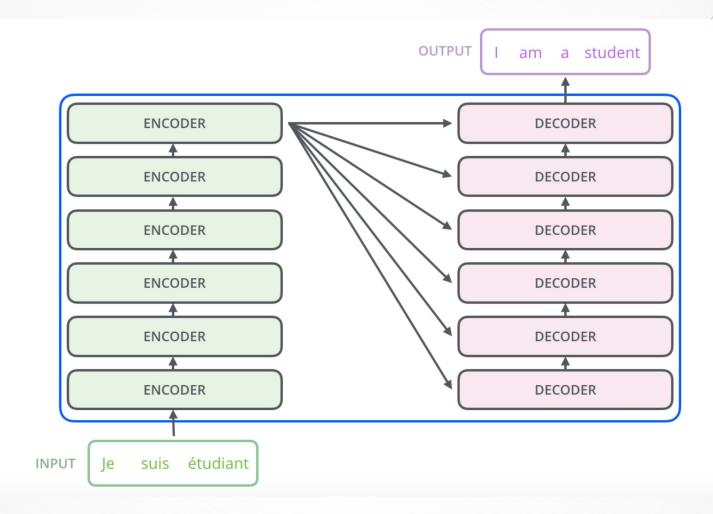
Decoder RNN

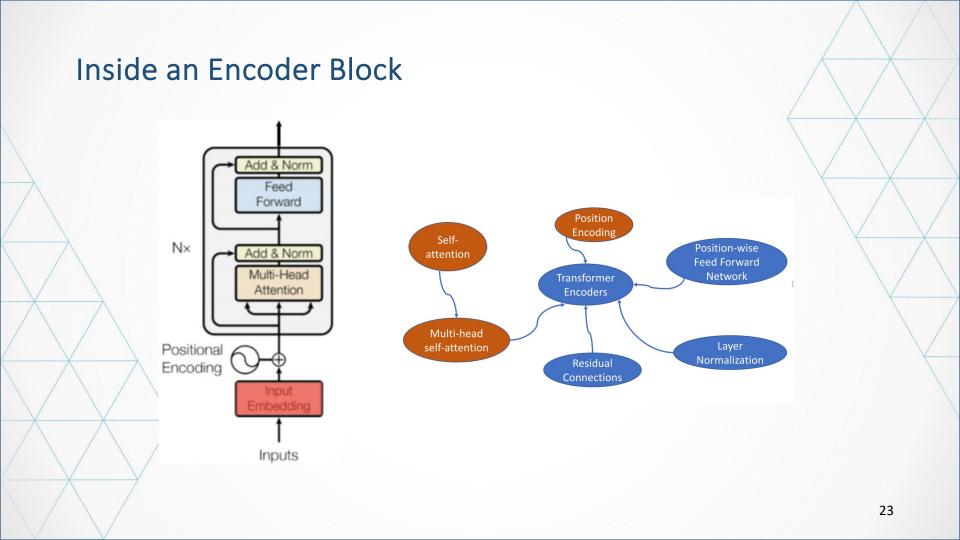
19

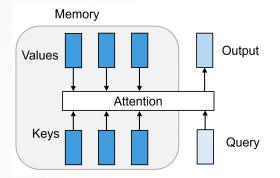




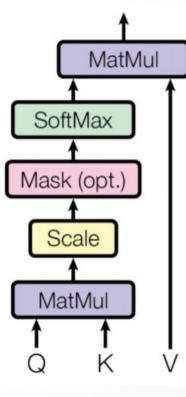
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems. Curran Associates, Inc

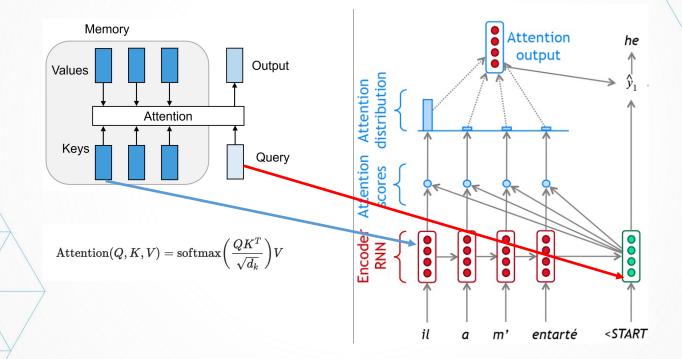




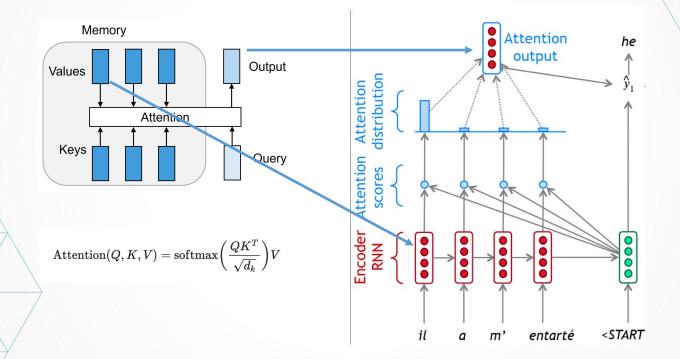


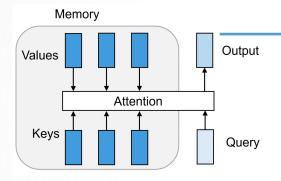
 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}igg(rac{QK^T}{\sqrt{d_k}}igg)V$





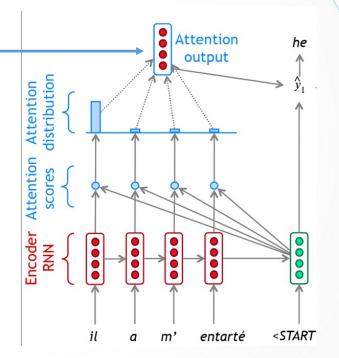
25





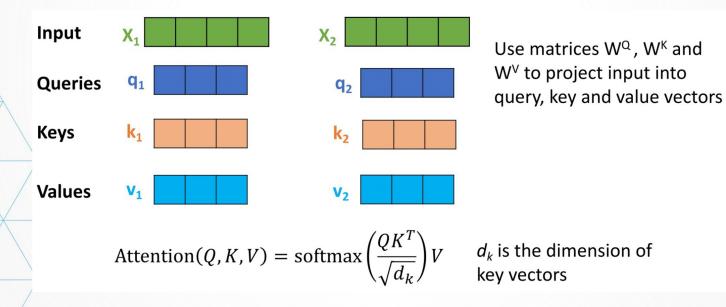
RNN-based Seq2Seq:

- Keys and Values are the same
- Queries are provided from encoder



Self-Attention in Transformer

- Attention maps a query and a set of key-value pairs to an output
 - query, keys, and output are all vectors



Self-Attention

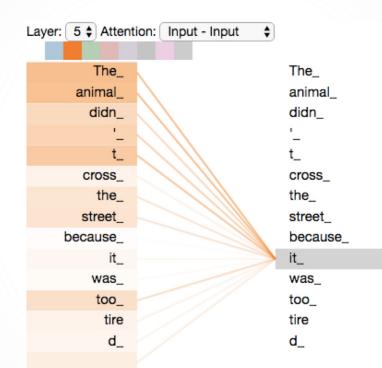
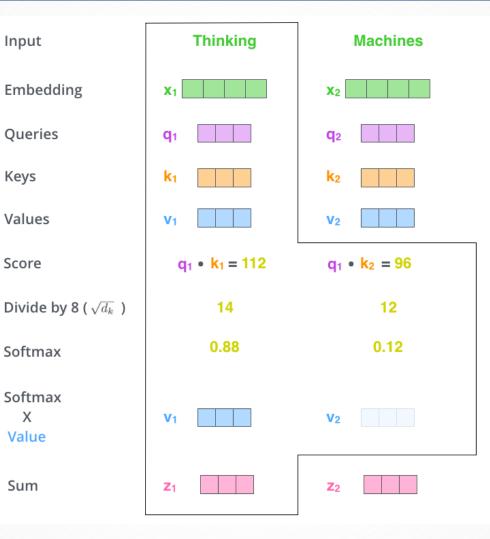
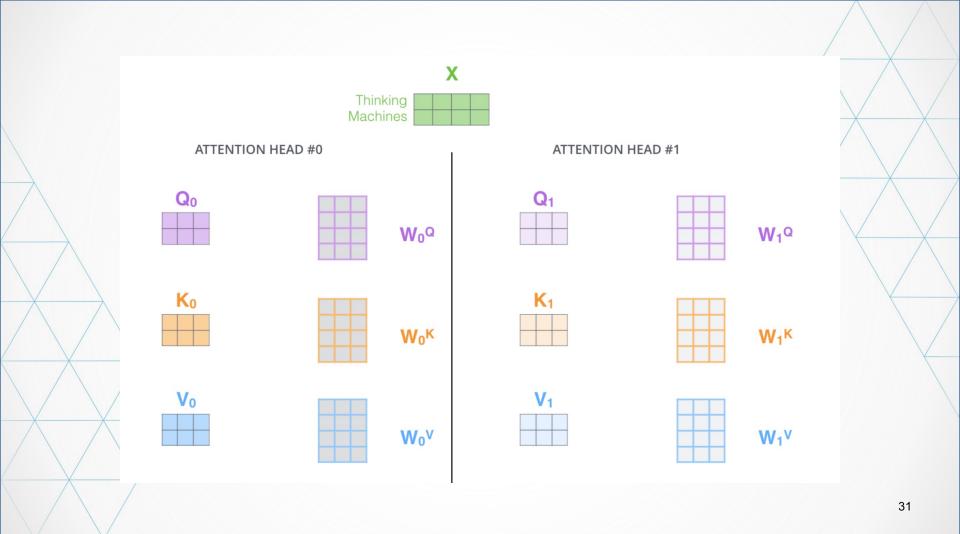
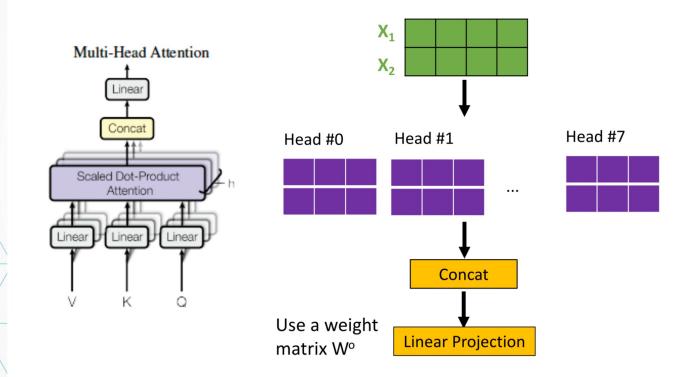


Image source: https://jalammar.github.io/illustrated-transformer/





Multi-Head Attention



1) This is our 2) We embed input sentence* each word*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

...

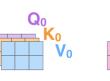
'<mark>7</mark>K ₩7^V 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

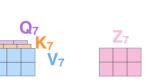
* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

			_v	V ₀ K
	Ċ			V₀ĸ W₀v
	—			
- 4				
		N	1	Q
L.	H			V ₁ к
	-			W ₁ v

W₀Q



. . .



Wo

Z

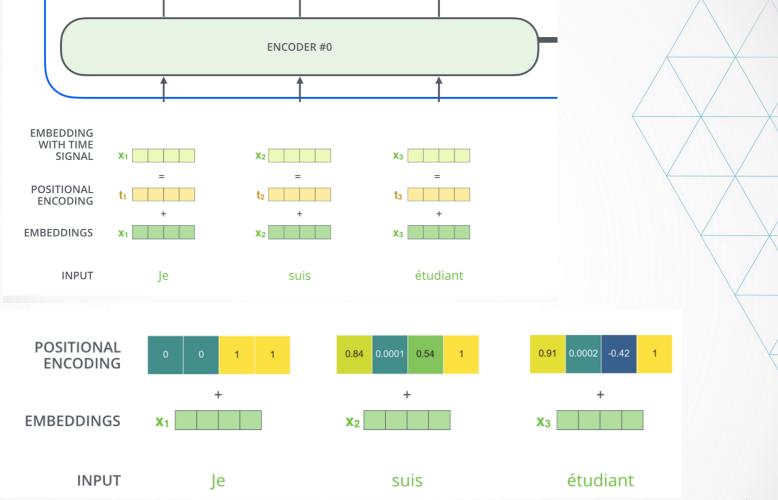
Position Encoding

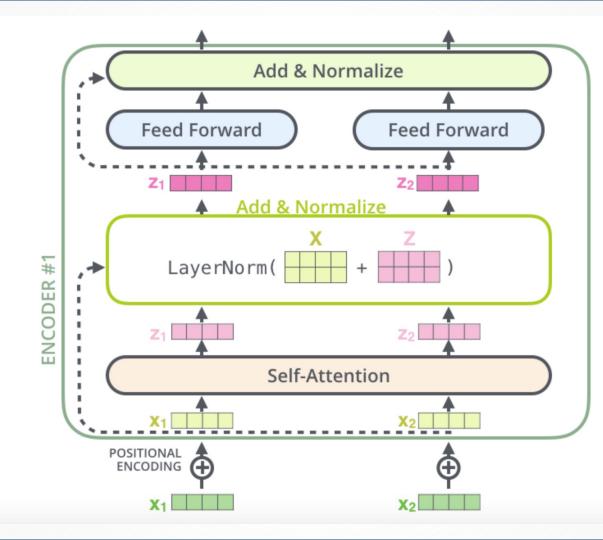
- Position Encoding is used to make use of the order of the sequence
 - Since the model contains no recurrence and no convolution
- In Vawasni et al., 2017, authors used sine and cosine functions of different frequencies

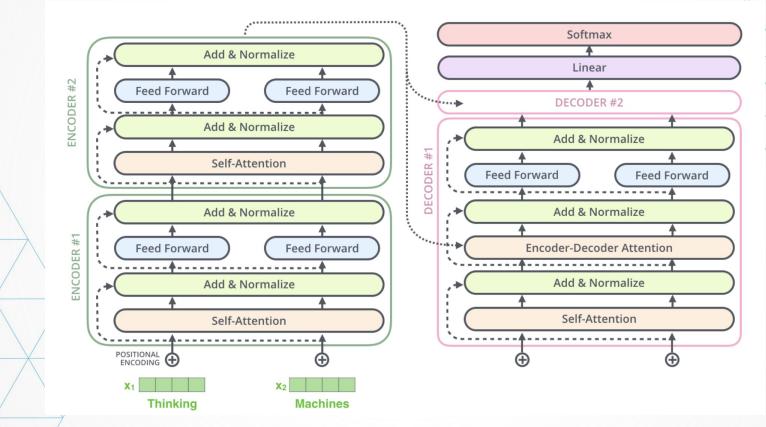
$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$

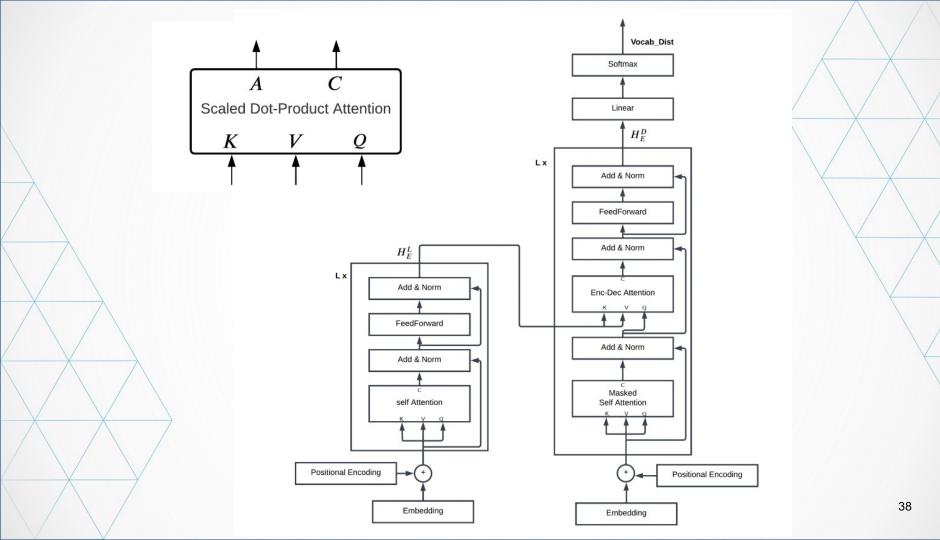
$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$

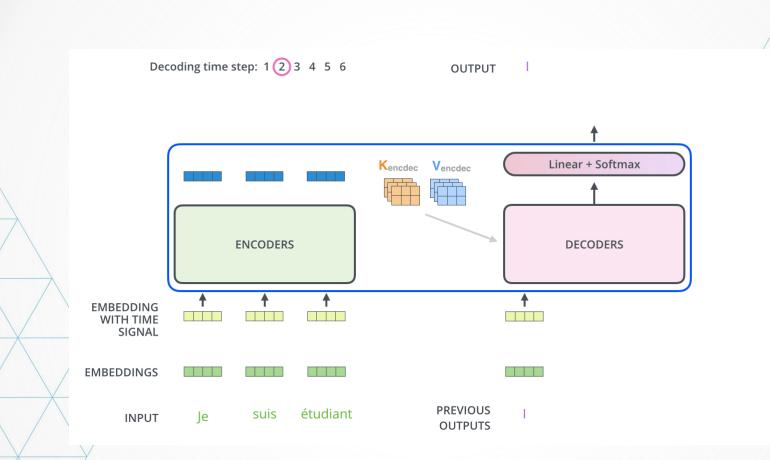
• *pos* is the position and *i* is the dimension











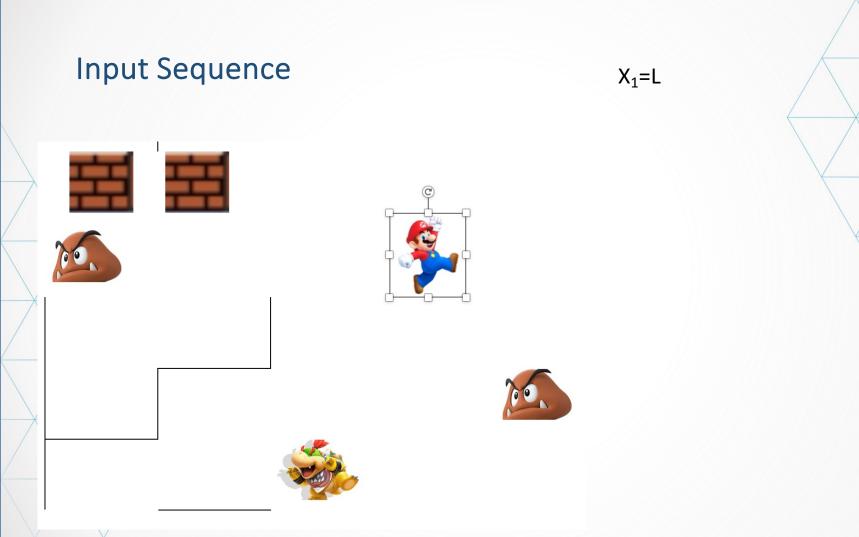
Part II: Mamba

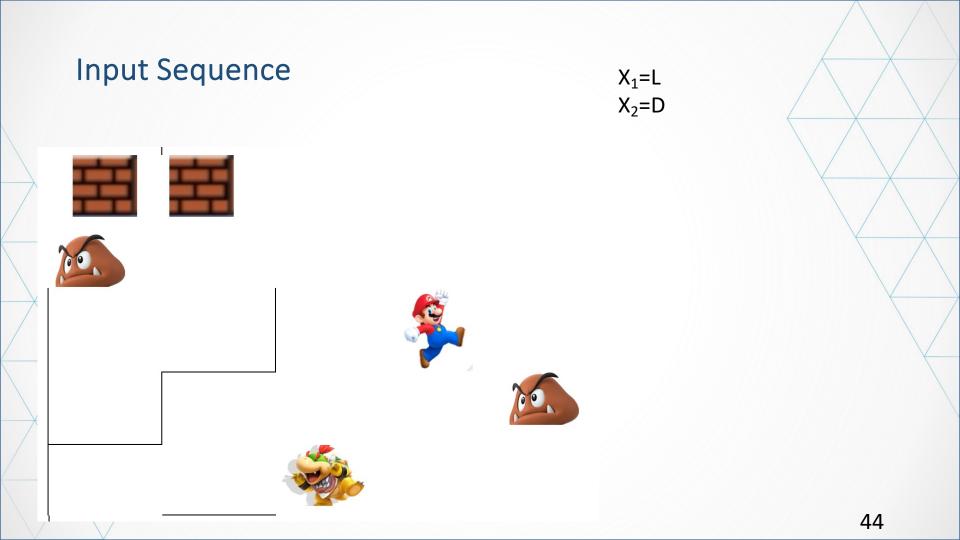
To save the princess: a state-based approach

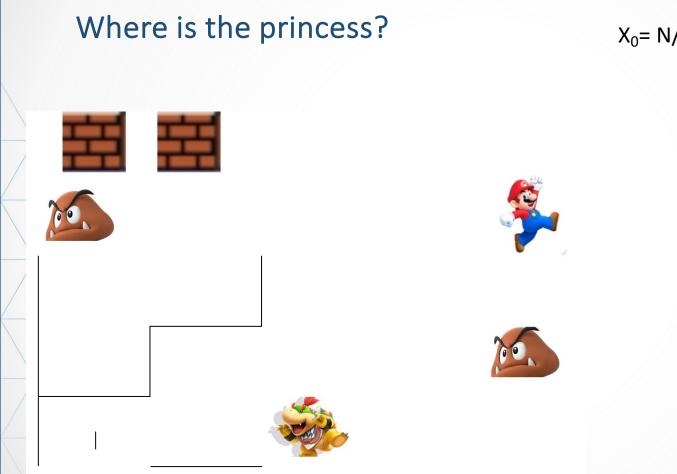
Where is the princess?

ŦŦ

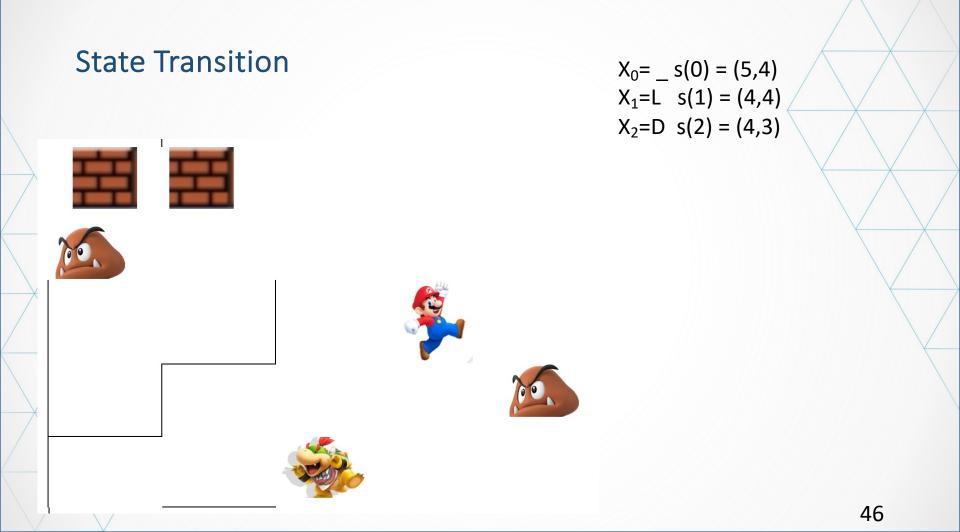
42

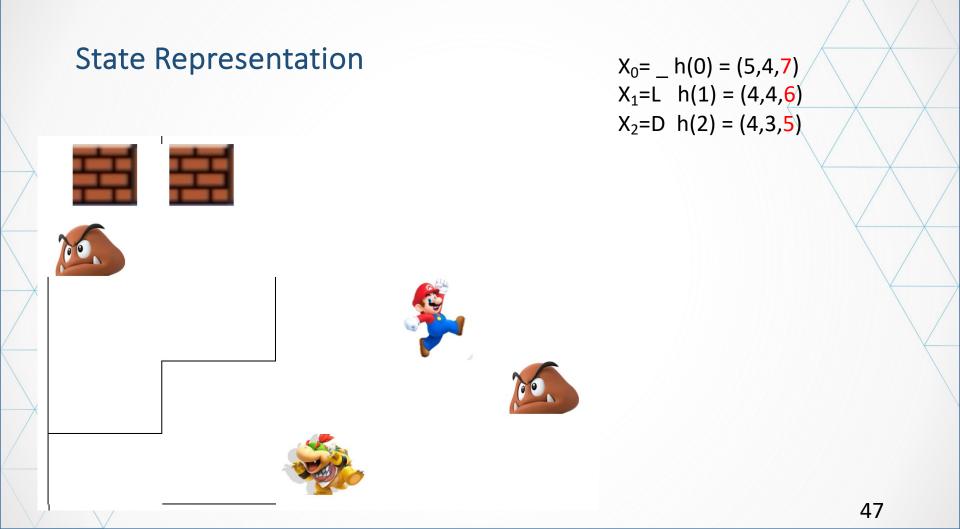


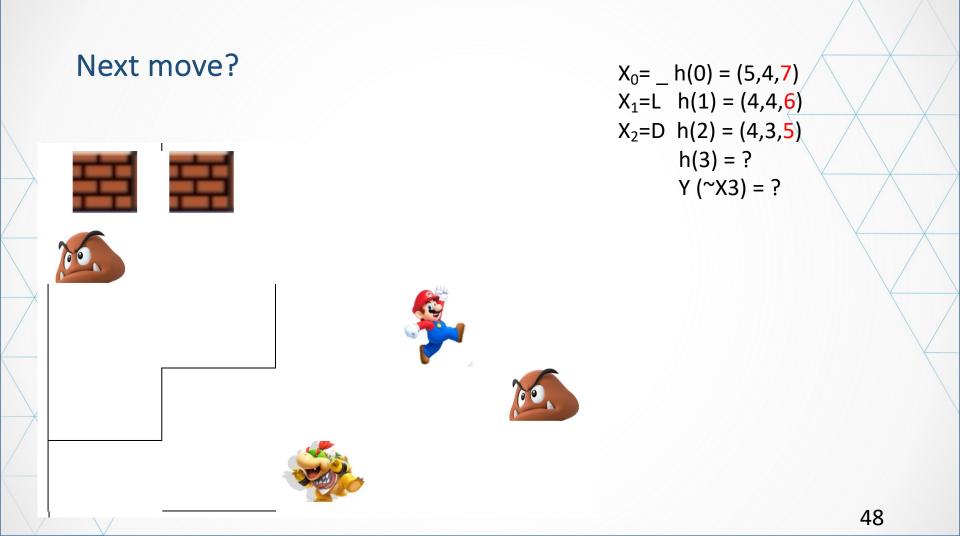


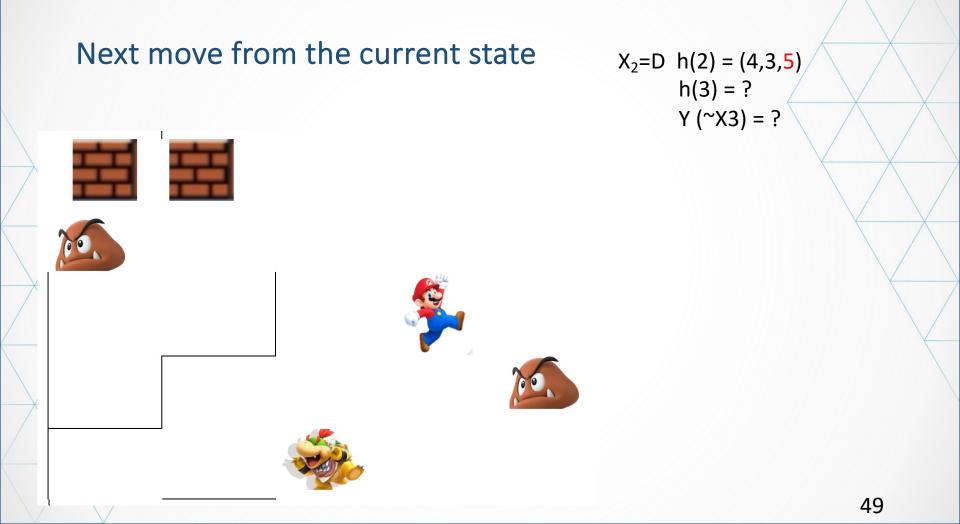


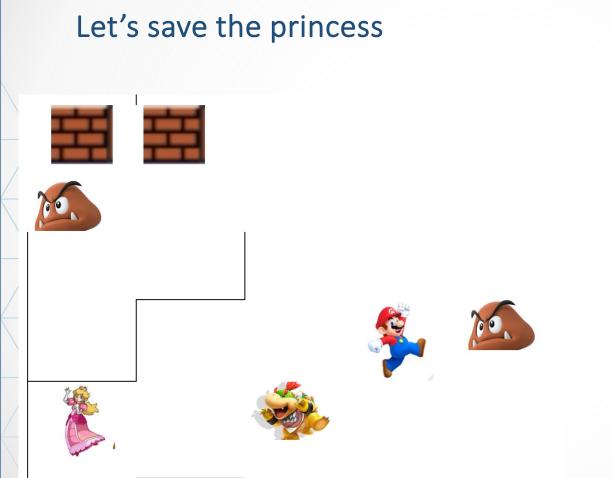
 $X_0 = N/A s(0) = (5,4)$









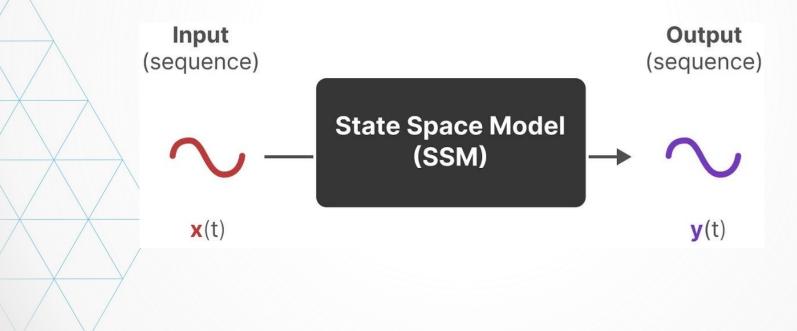


$X_2=D$ h(2) = (4,3,5) h(3) = (4,3,4) Y (~X3) = D

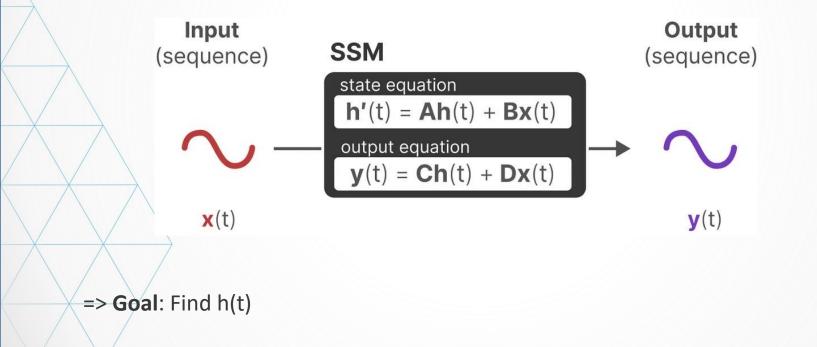
h_final = (1,1,0)

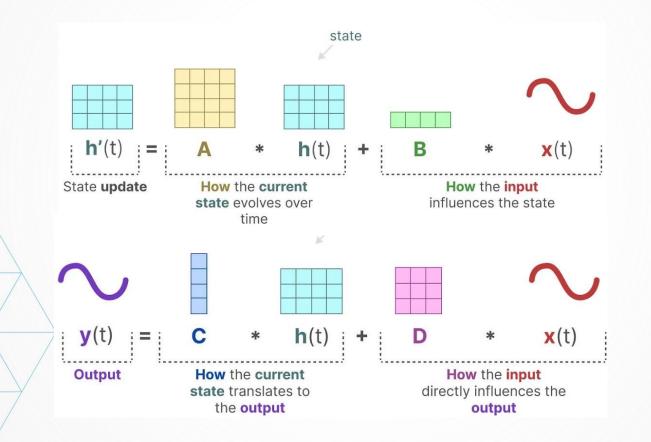
...

SSMs are models used to **describe** these **state representations** and make predictions of **what their next state could be** depending on some input

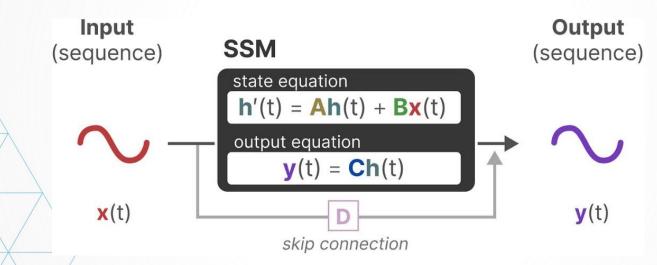


Assumption: Dynamic system can be predicted from its state at time t by two equations





Ignore the skip connection in the SSM



=> Only work for continuous time representation?

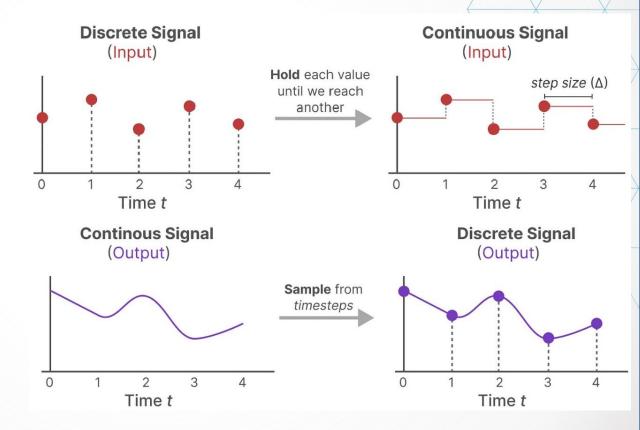
SSMs Discretization

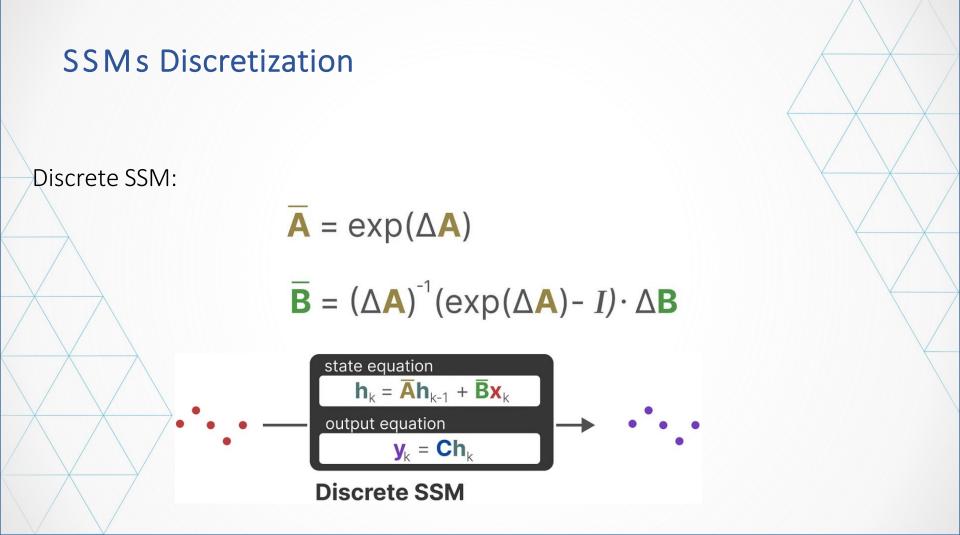
With text input, need a discrete model (discrete -

> discrete)

Zero order hold:
Input: Hold value until meet another
Output: Sample

discrete values





SSM = RNN + Transformer?

Introduction

Problem with Transformers

Pros:

Can route information densely within a context window **Parallelizable** training

Cons:

Slow inference: scale quadratically with sequence length Can not model anything **outside the context window**

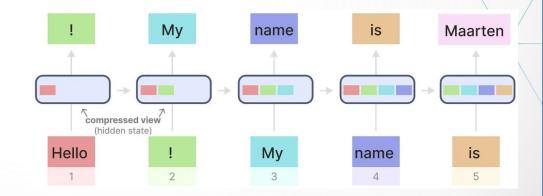
Introduction

Is RNN a solution?

Pros:

Inference is fast (linear) + can have large context length (in theory)
 Cons:

Tend to forget information over time Training can't be done in parallel



Can we leverage both pros of the two architectures?

Training

Inference

Transformers

RNNs

Fast! (parallelizable)

Slow... (not parallelizable)

Slow... (scales quadratically with sequence length)

Fast! (scales linearly with sequence length)

The two views of SSMs

SSM: The RNN view => Fast inference

Timestep 0

 $\mathbf{h}_0 = \overline{\mathbf{B}}\mathbf{x}_0$

 $\mathbf{y}_0 = \mathbf{Ch}_0$

Timestep -1 does not exist so **Ah**₋₁ can be ignored h₁ = Āh₀ + Bx₁ y₁ = Ch₁ State of previous timestep State of current timestep

Timestep 1

 $h_2 = \overline{A}h_1 + \overline{B}x_2$ $y_2 = Ch_2$ State of previous timestep State of current timestep

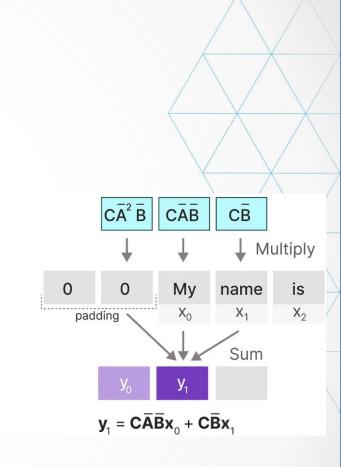
Timestep 2

The two views of SSMs

SSM: The CNN view => Parallelizable training

 $h_0 = \bar{B}x_0$ $y_0 = Ch_0 = C\bar{B}x_0$ $h_1 = \bar{A}h_0 + \bar{B}x_1 = \bar{A}\bar{B}x_0 + \bar{B}x_1$ $y_1 = Ch_1 = C(\bar{A}\bar{B}x_0 + \bar{B}x_1) = C\bar{A}\bar{B}x_0 + C\bar{B}x_1$

 $h_{2} = \bar{A}h_{1} + \bar{B}x_{2} = \bar{A}(\bar{A}\bar{B}x_{0} + \bar{B}x_{1}) + \bar{B}x_{2} = \bar{A}^{2}\bar{B}x_{0} + \bar{A}\bar{B}x_{1} + \bar{B}x_{2}$ $y_{2} = Ch_{2} = C(\bar{A}^{2}\bar{B}x_{0} + \bar{A}\bar{B}x_{1} + \bar{B}x_{2}) = C\bar{A}^{2}\bar{B}x_{0} + C\bar{A}\bar{B}x_{1} + C\bar{B}x_{2}$



Kernel

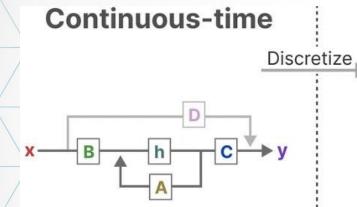
Input

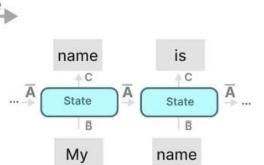
 (X_{ν})

Output

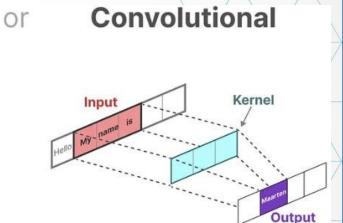
 (y_k)

The two views of SSMs





Recurrent



efficient inference
 parallelizable training

➤ unbounded context✓ parallelizable training

Important property of CNN and RNN representations:

Linear time invariant

steps

All state space model params are fixed for all time

 My name is
 mode

 Inference mode
 name is

 Inference mode
 is

 Inference mode
 is

 Inference mode
 is

Training

State Space Model

Convolutional

name

Maarter

=> Static representation, not content-aware

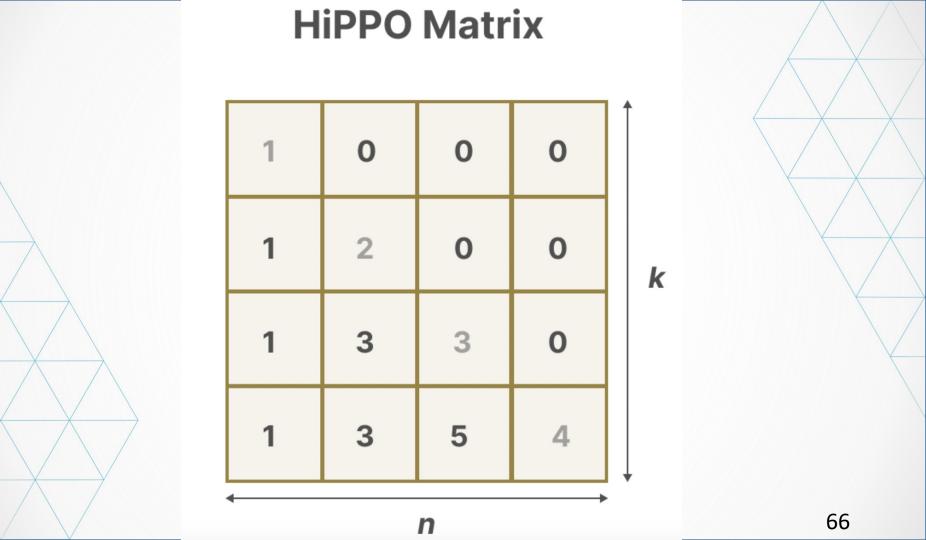
Hippo

The matrix A: captures information from previous state Need to be designed carefully

Random initialized A => poor performance Use HiPPO matrix

$$\mathbf{A}_{nk} = -\begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k\\ n+1 & \text{if } n = k\\ 0 & \text{if } n < k \end{cases}$$

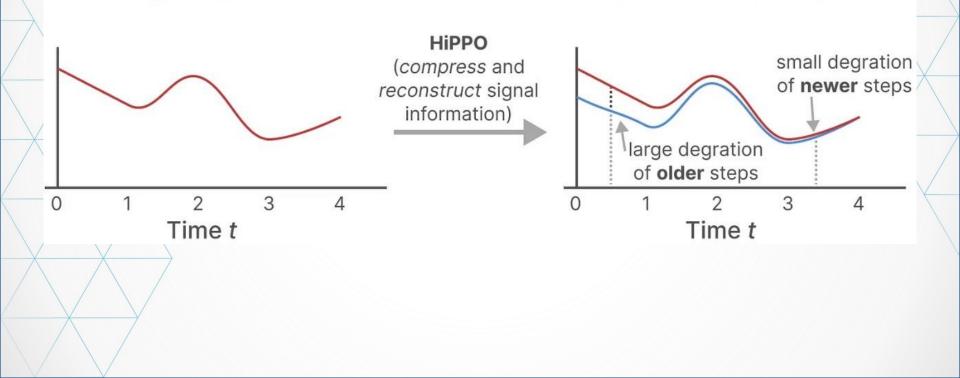
 $h_t = \overline{A}h_{t-1} + \overline{B}x_t$ $y_t = Ch_t$

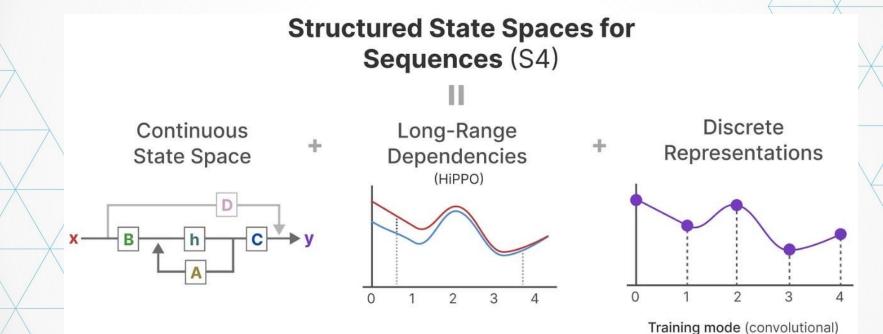


Hippo

Input Signal

Reconstructed Signal



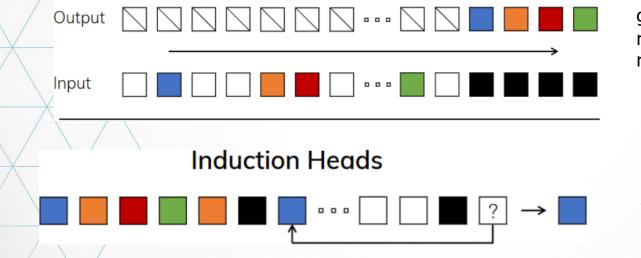


Inference mode (recurrence)

The Mamba model

S4 still performs poorly on certain tasks

Selective Copying



given a comment on Twitter, rewrite the comment by removing all the bad words

Few shot prompting: "1+1 = 2 then 2+2 = ?"

Mamba model: motivation

Why?

Time Invariant: all params A, B, C, D are **fixed for every tokens** it generates => **Can not choose** which information it need to focus

But it could be done easily by Transformer: can attend to all previous tokens when generating current one

Mamba model: Selective SSMs

Incoporate the sequence length and batch size of the input by a MLP projection

Algorithm 1 SSM (S4)	Algorithm 2 SSM + Selection (S6)	
Input: $x : (B, L, D)$	Input: x : (B, L, D)	
Output: $y : (B, L, D)$	Output: <i>y</i> : (B, L, D)	
1: A : (D, N) \leftarrow Parameter	1: A : (D, N) \leftarrow Parameter	
\triangleright Represents structured $N \times N$ matrix	\triangleright Represents structured $N \times N$ matrix	
2: B : (D, N) \leftarrow Parameter	2: B : (B, L, N) $\leftarrow s_B(x)$	
3: C : (D, N) \leftarrow Parameter	3: C : (B, L, N) $\leftarrow s_C(x)$	
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) $\leftarrow \tau_{\Delta}$ (Parameter+ $s_{\Delta}(x)$)	
5: $\overline{A}, \overline{B}$: (D, N) \leftarrow discretize(Δ, A, B)	5: $\overline{A}, \overline{B}$: (B, L, D, N) \leftarrow discretize(Δ, A, B)	
6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	
▷ Time-invariant: recurrence or convolution	▷ Time-varying: recurrence (<i>scan</i>) only	
7: return y	7: return y	

 $s_B(x) = \text{Linear}_N(x), \ s_C(x) = \text{Linear}_N(x), \ s_\Delta(x) = \text{Broadcast}_D(\text{Linear}_1(x)), \ \tau_\Delta = \text{softplus}$

Mamba model: Selective SSMs

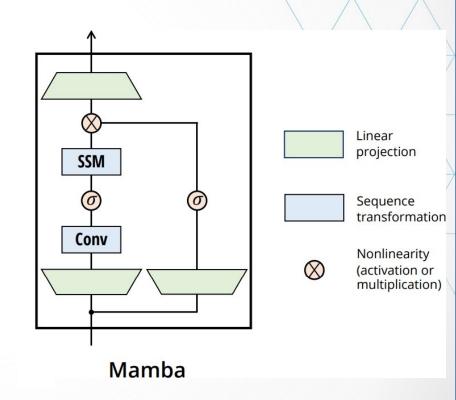
Connection: Gating mechanism of RNNs is an instance of selection mechanism in Mamba

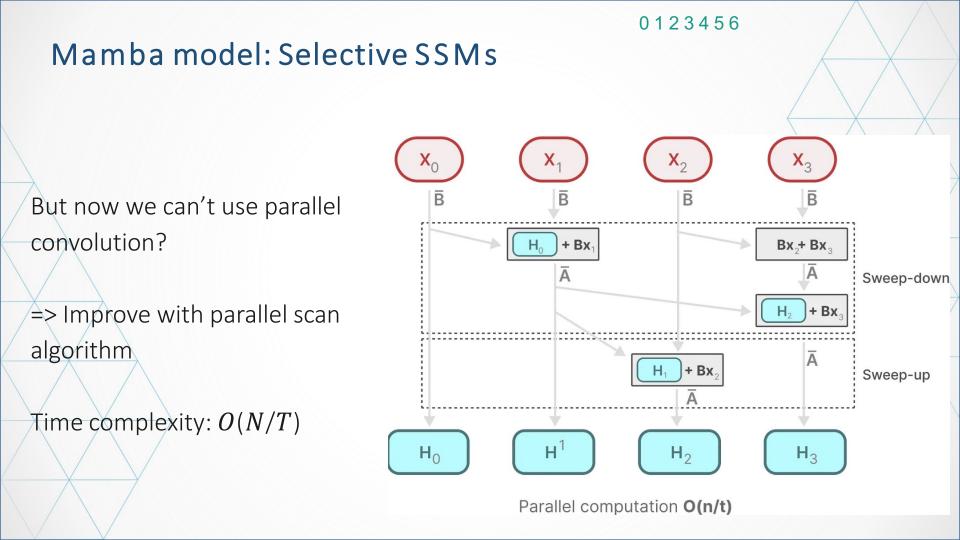
When
$$N = 1, A = -1, B = 1, s = Linear (x),$$

t = softplus

 $g_t = \sigma(\text{Linear}(x_t))$ $h_t = (1 - g_t)h_{t-1} + g_t x_t$

⇒ When $g_t \rightarrow 0$: filter noise, ⇒ When g_t is large: reset the state





Mamba model: Kernel fusion

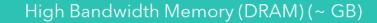
Normal:

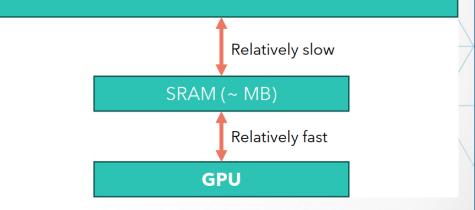
Load tensor from HBM to SRAM

-> compute -> save back to HBM

for each operations

Cost time for copying operations Fuse CUDA kernels -> one custom CUDA kernel without copying intermediate results





Mamba model: Recomputation

Normal training: Need to cache the outputs of forward steps to perform backpropagation

 \Rightarrow Need to save to HBM and copy back -> **Slow**

Just recompute them during backpropagation!

Mamba model: Performance

Model	Arch.	Layer	Acc.
S4	No gate	S4	18.3
-	No gate	S6	97.0
H3	H3	S4	57.0
Hyena	H3	Hyena	30.1
-	H3	S6	99.7
-	Mamba	S4	56.4
-	Mamba	Hyena	28.4
Mamba	Mamba	S6	99.8

Table 1: (**Selective Copying**.) Accuracy for combinations of architectures and inner sequence layers.

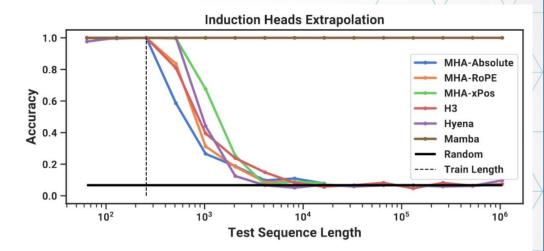


Table 2: (**Induction Heads**.) Models are trained on sequence length $2^8 = 256$, and tested on increasing sequence lengths of $2^6 = 64$ up to $2^{20} = 1048576$. Full numbers in Table 11.

Mamba model: Performance

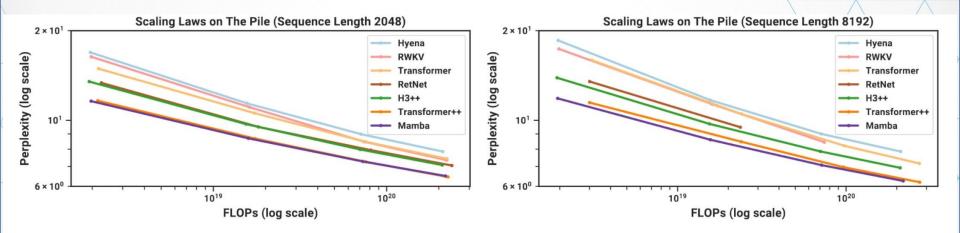


Figure 4: (Scaling Laws.) Models of size $\approx 125M$ to $\approx 1.3B$ parameters, trained on the Pile. Mamba scales better than all other attention-free models and is the first to match the performance of a very strong "Transformer++" recipe that has now become standard, particularly as the sequence length grows.

Thank you for your attention!

https://www.ura.hcmut.edu.vn/