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Part I: Transformer
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Sequence data and sequence models
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Sequence data

A series of data points whose points reliant on each other
• Length can be varied
•Positions matter
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Problem of Standard Networks

•Inputs, outputs can be different lengths in different examples.
•Relations between positions are not well reflected
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RNN comes as a rescue

RNN: an architecture  tailored for sequence data:

1. Doesn't depend on data  length

2. Take advantage of past  information
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RNN Revision
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Seq2seq and Attention
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Intuition
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Seq2Seq architecture
NLP researchers also  employ that 
idea into  designing a structure
dubbed  as Sequence-to-Sequence
(Seq2Seq), which extends 
AutoEncoder architecture
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Seq2Seq: The bottle neck problem

13



Seq2Seq with attention
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Seq2Seq with attention
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Seq2Seq with attention
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Seq2Seq with attention
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Seq2Seq with attention
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Seq2Seq with another bottleneck
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Inside an Encoder Block

23



Scaled Dot Product Attention
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Scaled Dot Product Attention
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Scaled Dot Product Attention
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Scaled Dot Product Attention
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RNN-based Seq2Seq:
- Keys and Values are the same
- Queries are provided from 

encoder



• Attention maps a query and a set of key-value pairs to an
output
• query, keys, and output are all vectors

Self-Attention in Transformer
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Image source: https://jalammar.github.io/illustrated-transformer/

Self-Attention
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Part II: Mamba
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To save the princess: a state-based 
approach

41



Where is the princess?
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Input Sequence
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X1=L



Input Sequence
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X1=L
X2=D



Where is the princess?

45

X0= N/A s(0) = (5,4)



State Transition
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X0= _ s(0) = (5,4)
X1=L   s(1) = (4,4)
X2=D  s(2) = (4,3)



State Representation
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X0= _ h(0) = (5,4,7)
X1=L   h(1) = (4,4,6)
X2=D  h(2) = (4,3,5)



Next move?
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X0= _ h(0) = (5,4,7)
X1=L   h(1) = (4,4,6)
X2=D  h(2) = (4,3,5)
           h(3) = ?           
           Y (~X3) = ?



Next move from the current state
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X2=D  h(2) = (4,3,5)
           h(3) = ?           
           Y (~X3) = ?



Let’s save the princess
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X2=D  h(2) = (4,3,5)
           h(3) = (4,3,4)           
           Y (~X3) = D
…

h_final = (1,1,0) 



Introduction: State space model

SSMs are models used to describe these state representations and make 
predictions of what their next state could be depending on some input



Introduction: State space model

Assumption: Dynamic system can be predicted from its state at time t by two 
equations

=> Goal: Find h(t)



Introduction: State space model



Introduction: State space model

Ignore the skip connection in the SSM

=> Only work for continuous time representation?



S S Ms  Discretization

With text input, need a 
discrete model (discrete -
> discrete)

Zero order hold:
- Input: Hold value until 

meet another
- Output: Sample 

discrete values



S S M s  Discretization

Discrete SSM:



SSM = RNN + Transformer?
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Introduction

Problem with Transformers
Pros:
- Can route information densely within a context window
- Parallelizable training
Cons:
- Slow inference: scale quadratically with sequence length
- Can not model anything outside the context window



Introduction

Is RNN a solution?
Pros:
- Inference is fast (linear) + can have large context length (in theory)
Cons:
- Tend to forget information over time
- Training can’t be done in parallel



Introduction

Can we leverage both pros of the two architectures?



The two views of SSMs

SSM: The RNN view => Fast inference



The two views of SSMs

SSM: The CNN view => Parallelizable training



The two views of S SMs



Introduction: State space model

Important property of CNN 
and RNN representations: 
Linear time invariant

All state space model 
params are fixed for all time 
steps

=> Static representation, not
content-aware



HiPPO

The matrix A: captures information from previous state
� Need to be designed carefully

Random initialized A => poor performance 
Use HiPPO matrix
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HiPPO



Introduction: State space model



The Mamba model
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Mamba model: motivation

S4 still performs poorly on certain tasks

given a comment on Twitter, 
rewrite the comment by 
removing all the bad words

Few shot prompting:
“1+1 = 2 then 2+2 = ?“



Mamba model: motivation

Why?
Time Invariant: all params A, B, C, D are fixed for every tokens it generates
=> Can not choose which information it need to focus

But it could be done easily by Transformer: can attend to all previous 
tokens when generating current one



Mamba model: Selective SSMs

● Incoporate the sequence length and batch size of the input by a MLP projection



Mamba model: Selective SSMs

● Connection: Gating mechanism of RNNs is 
an instance of selection mechanism in 
Mamba

When 𝑁  = 1, 𝐴 = −1, 𝐵 = 1, 𝑠 = Linear 𝑥 ,
𝑡 = softplus

Þ When 𝑔𝑡 → 0: filter noise,
Þ When 𝑔𝑡 is large: reset the state



Mamba model: Selective SSMs

But now we can’t use parallel
convolution?

=> Improve with parallel scan
algorithm

Time complexity: 𝑂(𝑁/𝑇)

0 1 2 3 4 5 6



Mamba model: Kernel fusion

Normal:
Load tensor from HBM to SRAM
-> compute -> save back to HBM
for each operations

� Cost time for copying 
operations

� Fuse CUDA kernels -> one 
custom CUDA kernel without 
copying intermediate results



Mamba model: Recomputation

Normal training: Need to cache the outputs of forward steps to 
perform backpropagation

Þ Need to save to HBM and copy back -> Slow

Þ Just recompute them during backpropagation!



Mamba model: Performance



Mamba model: Performance



Thank you for your attention!
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