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Learning a Policy – RL basics

Reinforcement learning

● Introduction to RL
● Markov Decision Processes (MDPs)
● Solving known MDPs using value and policy iteration
● Solving unknown MDPs using function approximation and Q-learning
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Learning a Policy – RL basics

Policy:

Goal:

Return:

An MDP is defined by:
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- Set of states 𝑆.
- Set of actions 𝐴.
- Transition function 𝑃(𝑠%|𝑠,	𝑎).
- Reward function 𝑟(𝑠,	𝑎,	𝑠%).
- Start state 𝑠&.
- Discount factor 𝛾.
- Horizon 𝐻.



RL vs Supervised Learning

Reinforcement Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

Supervised Learning

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

4



Intersection Between RL and Supervised Learning

Imitation learning

Obtain expert trajectories (e.g. human driver/video demonstrations):

Perform supervised learning by predicting expert action

But: distribution mismatch between training and testing 
Hard to recover from sub-optimal states

Sometimes not safe/possible to collect expert trajectories
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RL as Exploring a Tree

+1

𝑠1	 𝑎1	 𝑠2	 𝑎2	 𝑠3	 …

+100
-1

+2

+3

+1

𝜋	 which action to take from each s

State-value function: how much total reward 
should I expect following 𝜋	from s?

Action-value function: how much total reward 
should I expect taking a, then following 𝜋,	from s?

𝑉𝜋	 𝑠1	 =	99

𝑄𝜋	 𝑠1,	𝑢𝑝	 =	3

𝑉𝜋	 𝑠1	 =	99

𝑄∗	 𝑠1,	𝑢𝑝	 =	4
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Relationships Between State and Action Values

State value functions
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Action value functions



Value-based Methods

Optimal policy can be found by maximizing over Q*(s,a)

Optimal policy can also be found by maximizing over V*(s’) 
with one-step look ahead

State value functions
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Action value functions



Policy-based Methods

Q(s,a) and V(s) very high-dimensional 
But policy could be just ‘open/close hand’
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Value-based vs Policy-based

Value-based
- More sample efficient, respects MDP 
structure
- Easier to add human knowledge about 
states and actions
- More complex algorithm
- Can’t handle continuous argmax, harder 
to understand, sometimes values are 
more complex than policies

Policy-based
- Less sample efficient, more 
akin to trial-and-error
- Harder to add human 
knowledge
- Simpler algorithm
- Directly learns policy, can 
be more interpretable
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Policy-based RL

Recursive definition
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Bellman Optimality for State Value Functions

Recursive definition

12



Bellman Optimality for State Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Bellman Optimality for Action Value Functions

Recursive definition
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Solving the Bellman Optimality Equations

Solve by iterative methods

Recursive definition

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

[Slides from Fragkiadaki, 10-703 CMU]
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Value Iteration

Find the best action according to one-step look ahead

[Slides from Fragkiadaki, 10-703 CMU]
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Repeat until policy converges. Guaranteed to converge to optimal policy.



Q-Value Iteration

[Slides from Fragkiadaki, 10-703 CMU]

20



Fully known 
MDP

states
transitions 

rewards

Bellman 
optimality 
equations

Bellman 
expectation 
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space 

Update equations require fully observable MDP and known transitions
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Q-policy iteration

Policy iteration

Q-value iteration

Value iteration

Summary: Exact Methods



Unknown MDPs?

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

simulation and exploration

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

learning 
rate
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Key idea: implicitly estimate the transitions via simulation



Tabular Q-learning

Bellman optimality

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

[Slides from Fragkiadaki, 10-703 CMU]
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Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal 
region, and never explore further.

Gradually decrease epsilon as policy is learned.

[Slides from Fragkiadaki, 10-703 CMU]
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Tabular Q-learning

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space 
How can we generalize to unseen states?

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

Q-learning with function approximation to extract informative features from high-dimensional
input states.

Represent value function by Q network with weights w

+ high-dimensional, continuous states
+ generalization to new states

[Slides from Fragkiadaki, 10-703 CMU]
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Deep Q-learning

- Optimal Q-values should obey Bellman equation

- Treat right-hand as as a target

- Minimize MSE loss by stochastic gradient descent
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Deep Q-learning Challenges

- Minimize MSE loss by stochastic gradient descent

- Converges to Q* using table lookup representation

- But diverges using neural networks due to:
- Correlations between samples
- Non-stationary targets
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Deep Q-learning: Experience Replay

- To remove correlations, build data-set from agent’s own experience

- Sample random mini-batch of transitions (s,a,r,s’) from D

exploration, epsilon greedy is important!
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Deep Q-learning: Fixed Q-targets

- Sample random mini-batch of transitions (s,a,r,s’) from D
- Compute Q-learning targets w.r.t. old fixed parameters w-

- Optimize MSE between Q-network and Q-learning targets

- Use stochastic gradient descent
- Update w- with updated w every ~1000 iterations
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Policy Gradients

Formally, let’s define a class of parameterized policies 

For each policy, define its value:
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Policy Gradients

Writing in terms of trajectories 

Probability of a trajectory Reward of a trajectory

36



Policy Gradients

Formally, let’s define a class of parameterized policies 

For each policy, define its value:

We want to find the optimal policy 

How can we do this?

Gradient ascent on policy parameters
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REINFORCE Algorithm
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Intractable
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities? 

We have:
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities? 

We have:

Thus:
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities? 

We have:

Thus:

And when differentiating: Doesn’t depend on 
transition probabilities
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REINFORCE Algorithm

Can we compute these without knowing the transition probabilities? 

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory, we can estimate gradients:

Doesn’t depend on 
transition probabilities
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Policy Gradients

Gradient estimator:

Interpretation:
- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen
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Policy Gradients

epsilon greedy

[Slides from Fragkiadaki, 10-703 CMU]
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Gradient estimator:

Interpretation:
- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen



Policy Gradients

Gradient estimator:

Interpretation:
- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really 
hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]
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Variance Reduction with a Baseline

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all 
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you 
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an 
estimator:

e.g. exponential moving average of the rewards.

[Slides from Fragkiadaki, 10-703 CMU]
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Actor-Critic Methods

A better baseline: want to push the probability of an action from a state, if this 
action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if Q(s,a) - V(s) is large. 
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Methods

Actor: decides what actions to take
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Critic: evaluates how good the action is

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q function)

Exploration + experience replay 
Decorrelate samples

Fixed targets

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]
Variance reduction with a baseline



Summary: RL Methods

Value iteration 
Policy iteration 
(Deep) Q-learning

Policy gradients

[Slides from Fragkiadaki, 10-703 CMU]
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Actor (policy) 
Critic (Q-values)



Reinforcement Learning in DeepSeek Models

Reinforcement Learning in Large Language Models
Actor-Critic, TRPO, PPO, and GRPO



Introduction

DeepSeek models leverage advanced RL algorithms to improve reasoning ability Key 
algorithms:

Actor-Critic
Trust Region Policy Optimization (TRPO) 
Proximal Policy Optimization (PPO)
Group Relative Policy Optimization (GRPO) - DeepSeek’s innovation

Applications in:
DeepSeekMath (mathematical reasoning) 
DeepSeek-R1 (general reasoning capabilities)

Reinforcement Learning in DeepSeek Models



Scaling Laws in AI

Scaling Law: Model performance improves predictably with:
More parameters (N) 
More training data (D) 
More compute (C )

Key equation (Kaplan et al. 2020, OpenAI):

   (1)

Observed across: 
Language models 
Vision models 
Multimodal systems

Reinforcement Learning in DeepSeek Models



The Scaling Timeline

Figure: Scaling law curve

Reinforcement Learning in DeepSeek Models



Test-Time Compute

Definition
The computational resources allocated during inference to solve a task

Reason: Further scaling in the training phase becomes difficult due to the scarcity of data and 
computational resources.

System 1:
GPT-4, Deepseek-V3 

Fast, intuitive

Limited reasoning steps

System 2:
GPT-o1, Deepseek-R1 

Slow, deep thinking 

Multi-step reasoning

Key Insight
Performance can scale with inference compute independently of model size

Reference: Test-Time Compute: from System-1 Thinking to System-2 Thinking, Yixin Ji, Juntao Li, Hai Ye, 
Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, Min Zhang, arkiv Mar, 2025

Reinforcement Learning in DeepSeek Models



The Performance of Deepseek R1

Figure: Benchmark performance of DeepSeek-R1.

Reinforcement Learning in DeepSeek Models



Reinforcement Learning

Reinforcement Learning in DeepSeek Models



Notations

Reinforcement Learning in DeepSeek Models



“Expected Returns” Objective

Reinforcement Learning in DeepSeek Models



Policy Gradient Theorem (Sutton, 2000)
Key Idea

Reinforcement Learning in DeepSeek Models

Recap: Policy Gradient



Recap: Policy Gradient

Reinforcement Learning in DeepSeek Models



Recap: Actor-Critic Framework
Two components:

Actor: Policy network πθ (a|s), also 
called actor model, decide which 
action to take for next step.
Critic: Value network Vϕ(s), measure 
how good the present state is.

Advantage function: A(st, at ) =
Q(st, at ) − 	V (st ) =  rt +  V (st+1) − 	V (st )

Policy gradient update:
∇θ  J(θ) =  E[∇θ log πθ (a|s)A(s, a)]
A(s,a) reflects how good the action we’ve 
taken compared to other candidates.

Using A(s,a) instead of Q(s,a) can make 
the training more stable.

Figure: Actor-Critic architecture

Reinforcement Learning in DeepSeek Models



The Actor-Critic Networks in AlphaGo

Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. 
Nature 529, 484–489 (2016).

Reinforcement Learning in DeepSeek Models



Trust Region Policy Optimization (Schulman, 2015)

The problem of policy gradient:
Large policy change destroys training
Improper learning rate causes vanishing or exploding gradient
Poor sample efficiency. PG needs over 10 million or more training time steps for toy 
experiments.

Reinforcement Learning in DeepSeek Models



TRPO

Reinforcement Learning in DeepSeek Models



TRPO and PPO

Trust Region Policy Optimization (TRPO), ICML2015

πθold (a|s)Constrained optimization to ensure stable updates: maxθ E[ πθ (a|s) A(s, a)]

Subject to KL-divergence constraint: E[KL(πθold ||πθ )] ≤ 	δ

Proximal Policy Optimization (PPO) (OpenAI, 2017)
Simplified version with clipped objective:
LCLIP (θ) =  E[min(rt (θ)At, clip(rt (θ), 1 − 	ϵ, 1 +  ϵ)At )]

Where rt (θ) =  πθ (at |st ) 
πθold (at |st )

Using a simple clip function to take the place of KL divergence 

Used in ChatGPT’s RLHF Algorithm

Reinforcement Learning in DeepSeek Models



Teacher forcing

• Simple supervised learning

• Input = Prompt + Target[0:-1]

• Loss(output, Target[1:])

LLM

Input

Output

Prompt Generation

Supervision



Outcome supervision

• What if we only supervise the final 
result?

• Generation

• Loss(Generation)

• Teacher-forcing not possible

• No supervised loss

• Solution: RL

LLM

Input

Output

Prompt Generation

Supervision



Reinforcement Learning

Outcome supervision

LLM

Input

Output

Prompt Generation

Supervision



Interactive Digital Agents

• Train LLMs that interact with API’s on 
the users behalf

Reinforcement Learning for Long-Horizon Interactive LLM Agents, Chen … Krähenbühl 2025



Application of PPO in LLM
Nisan Stiennon, Learning to summarize from human feedback, NIPS 2020, OpenAI.

Reinforcement Learning in DeepSeek Models



Application of PPO in LLM InstructGPT OpenAI2022

Reinforcement Learning in DeepSeek Models



Reinforcement Learning in GPT-o1
Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning 
Perspective, Zhiyuan Zeng, et al, 2024

Reinforcement Learning in DeepSeek Models



Group Relative Policy Optimization (GRPO)

Reinforcement Learning in DeepSeek Models



GRPO

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, Shao etal 2024



PPO vs GRPO

Reinforcement Learning in DeepSeek Models



GRPO in DeepSeekMath

Reinforcement Learning in DeepSeek Models



RL-based Reasoning MLLM:
What has the community done?

What could the community do next?

"The senses are the organs by which man perceives the world, and the soul acts 
through them as through tools."

— Leonardo da Vinci



What has the community done?



First Success: Multimodality

Vision (perception)：
ImageR1-V

VLM-R1 
R1-Vision

MMR1
Visual-RFT
MM-Eureka

Seg-Zero
Vision-R1

VisualThinker-R1-Zero
R1-VL

OThink-MR1
Think or Not Think

OpenVLThinker
Reason-RFT

Q-Insight
R1-Zero-VSI

Ocean-R1
……

Vision (Temporal)：Video
Temporal-R1

SEED-Bench-R1
Video-R1
TimeZero

Open R1 Video
Open-LLaVA-Video-R1

……

Audio
Audio-Reasoner

R1-AQA
……



First Success: Multimodality

Medical Vision
MedVLM-R1

Med-R1
……

Omni

R1-Omni
……

Graphical User Interface
UI-R1
……

Metaverse
MetaSpatial

……



Second Success: Diverse Task——Take Vision as an Example
R1-V

Vision Counting Geometry Reasoning



Second Success: Diverse Task——Take Vision as an Example
VLM-R1



Second Success: Diverse Task——Take Vision as an Example
Visual-RFT



Second Success: Diverse Task——Take Vision as an Example
Seg-Zero



Second Success: Diverse Task——Take Vision as an Example
Seg-Zero



Second Success: Diverse Task——Take Vision as an Example
VisualThinker-R1-Zero
CVBench: Cambrian Vision-Centric Benchmark——2D and 3D understanding



Second Success: Diverse Task——Take Vision as an Example
Think or Not Think
Image Classification



Second Success: Diverse Task——Take Vision as an Example
Visual-Spatial Reasoning



Second Success: Diverse Task——Take Vision as an Example
MMR1，MM_Eureka
Visual Math Reasoning



Second Success: Diverse Task——Take Vision as an Example
Reason-RFT
Visual Counting, Structure Perception, Spatial Transformation



Third Success: Better Algorithms——Take Vision as an Example
R1-VL



Third Success: Better Algorithms——Take Vision as an Example
OpenVLThinker: Iterative Self-Improvement



What could the community do next?



To Do 1: Focus Further than Textual Modality
Take Vision Images as an Example

InitialrotationFlipCenter Crop

Random Crop

Invert

Affine MixedDiffusion (Add Noise)



To Do 2: Give Attention to Multi-modal Asymmetric

Reference: Gao X, Cao B, Zhu P, et al. Asymmetric Reinforcing against Multi-modal Representation Bias[J]. arXiv preprint arXiv:2501.01240, 2025.



To Do 3: Call for Multimodal Reasoning Agents

Deep Reasoning Trustworthy Action Environmental Aware Multi-Agent System
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Back to Reasoning: Interactive Reasoning

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]
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Language-conditional RL: Instruction Following

[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017]

Fusion 
Alignment 
Ground language 
Recognize objects
Navigate to objects 
Generalize to unseen objects

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]

10
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Language specifies the task



Language-conditional RL: Instruction Following

● Gated attention via element-wise product

Fusion 
Alignment 
Ground language 
Recognize objects

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Instruction Following

Grounding is 
important for 
generalization

blue armor, red pillar
-> blue pillar

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]
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Language-conditional RL: Embodied QA

Navigation + QA

[Das et al., Embodied Question Answering. CVPR 2018]
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Language-assisted RL: Language to Rewards

Language specifies the rewards rather than actions

“Jump over the skull 
while going to the 
left”

Reward shaping 
(Goyal et al. 2019)

“build an L-like shape 
from red blocks”

Goal specification 
(Bahdanau et al. 2019)

“I prefer JetBlue, 
even if it’s 
expensive”

Preferences 
(Lin et al. 2022)

https://arxiv.org/abs/1806.01946, 
https://arxiv.org/abs/1902.07742, 
https://www.ijcai.org/proceedings/2019/331,
https://arxiv.org/abs/2204.02515[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]

85

http://www.ijcai.org/proceedings/2019/331


Language-assisted RL: Language to Rewards

Montezuma’s 
revenge

Language specifies the rewards rather than actions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

“Jump over the skull while going to the left”

from Amazon Mturk :-( 
asked annotators to play the 
game and describe entities

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]

86

Intermediate rewards to speed up learning



Language-assisted RL: Domain knowledge

Language as domain knowledge – instruction manuals

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Language-assisted RL: Domain knowledge

1. Choose relevant sentences
2. Label words into action-description, state- 

description, or background

Language as domain knowledge – instruction manuals

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Language-assisted RL: Domain knowledge

A: action-description 
S: state-description

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]
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Relevant sentences

Language as domain knowledge – instruction manuals



Summary: Interactive Reasoning

Instruction following

“Jump over the 
skull while going 
to the left”

Reward shaping

Embodied QA

Domain knowledge

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]
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Interactive Reasoning Challenges Open 
challenges

Learning from open-ended manuals

[Atari Learning Environment]
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Interactive Reasoning Challenges Open 
challenges

Learning from text-based games

[Zhong et al., SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark. NeurIPS 2021]

11
5



Interactive Reasoning Challenges Open 
challenges

Learning from lots of offline data

[Fan et al., MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge. arXiv 2022]
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Interactive Reasoning Challenges Open 
challenges

Hard to specify reward, but only final goal

[Habitat Rearrangement Challenge 2022]
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Summary: RL Methods
Epsilon greedy + exploration 

Experience replay 
Decorrelate samples

Fixed targets

Value iteration 
Policy iteration 
(Deep) Q-learning

Policy gradients

Variance reduction with a baseline

Actor (policy) 
Critic (Q-values)
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