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Learning a Policy — RL basics

Reinforcement learning

Introduction to RL

Markov Decision Processes (MDPs)

Solving known MDPs using value and policy iteration

Solving unknown MDPs using function approximation and Q-learning
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Learning a Policy — RL basics

An MDP is defined by: A
’_I gent :
- Set of states S. state| |reward

- Set of actions A. S, R
" L] . ’
- Transition function P(s”|s, a). Rif

- Reward function r(s, a, s%). 5.1 Environment ]qi
- Start state sg. 1

- Discount factory.
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RL vs Supervised Learning

Reinforcement Learning

Sequential decision making
Maximize cumulative reward
Sparse rewards

Environment maybe unknown

Supervised Learning

One-step decision making
Maximize immediate reward
Dense supervision

Environment always known




Intersection Between RL and Supervised Learning

Imitation learning

pr—
>| Agent
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state reward action
S, R, A
- Rul ("
< Environment]<7
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: Obtain expert trajectories (e.g. human driver/video demonstrations):
g S0,a0,70,S51,Q1,71,S52,042,T2, ...

Perform supervised learning by predicting expert action

D = {(s0,ag), (51, a7), (52,a3), .-}

30x32 Sensor
Input Retina

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states
Sometimes not safe/possible to collect expert trajectories




S1

RL as Exploring a Tree

ai S? a S3

7 which action to take from each s

V7™(s) = Ex [G¢|St = s] V*(s) =max V7" (s)
State-value function: how much total r7erward
should | expect following 7 from s7?
V™ (s1) =99 VT (s1) =99

Q7 (s,a) =E; [G¢|S; = s,A; = a] Q" (s,a) =maxQ"(s,a)
Action-value function: how much total reward
should | expect taking a, then following m, from s?

Q" (s, up) =3 Q* (s, up) =4




Relationships Between State and Action Values

State value functions

V7™ (s)

VT(s) = m(als)Q (s,

a)

Action value functions

V*(s) = max V7" (s)

Q" (s,a)

v (s)

Q" (s, ) = max Q" (s, 0)




Value-based Methods

y Naliss Based State value functions Action value functions
- Learned Value Function VT ( 3) Q" ( S, a)
- Implicit policy (e.g. e-greedy) * *
V=(s) Q" (s,a)

Optimal policy can be found by maximizing over Q*(s,a)

. 1 —ck, if a = argmax, Q*(s,a)
mlals) = € else

Optimal policy can also be found by maximizing over V*(s’)
with one-step look ahead

. 1 —e, if a = argmax, Ey [r(s,a,s’) +yV*(s')]
mlals) = {e else



Policy-based Methods

raw pixels hidden layer

» Policy Based
No Value Function

- Learned Policy

mo(s,a) =Pla | s, 0]

= Often 7T can be simpler than Q or V

= E.g., robotic grasp Q(s,a) and V(s) very high-dimensional
But policy could be just ‘open/close hand’

= V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve argmax, Q*(s,a)

= Challenge for continuous / high-dimensional action spaces’




Value-based vs Policy-based

Q" (s,a)
. {1—6, if a = argmax, Q*(s,a) 7T9(5, a) :IP’[a | S5 9]
m*(als) =
€, else
Value-based Policy-based
- More sample efficient, respects MDP - Less sample efficient, more
structure akin to trial-and-error
- Easier to add human knowledge about - Harder to add human
states and actions knowledge
- More complex algorithm - Simpler algorithm
- Can’t handle continuous argmax, harder - Directly learns policy, can
to understand, sometimes values are be more interpretable

more complex than policies



Policy-based RL

Recursive definition




Bellman Optimality for State Value Functions

Recursive definition

V*(s)

V*(s")
V7 (s) = maxQ*(s, a)
= m(?JX]ES/ [7(s,a,s") +~yV*(s")]




Bellman Optimality for State Value Functions

Recursive definition

V*(s)

V()
V*(s) = max Q*(s,a)

= maxEy [r(s,a,s") +yV*(s")]

= max | Y p(s']s,a)(r(s,a,5') + 7V (s))




Bellman Optimality for Action Value Functions

Recursive definition

Q*(s,a) = Ey [r(s,a,s") + 7V (s')]




Bellman Optimality for Action Value Functions

Recursive definition

Q*(s,a) = Ey [r(s,a,s") +yV*(s')]
=E, [r(s, a,s’) + 7y max Q" (s, a/)]



Bellman Optimality for Action Value Functions

Recursive definition

Q*(s,a) =Eqy [r(s,a,s") +yV*(s')]
=E, [r(s, a,s’) + 7y max Q" (s, a/)]

= Zp(3’|s, a) (r(s, a,s’)+ Y max Q" (s, a/))



Solving the Bellman Optimality Equations

Recursive definition

V*(s) = max [Z p(s'|s,a)(r(s,a,s") + W*(S’))]

Solve by iterative methods

V[,’ZH](S) = max [Zp(3/|s, a)(r(s,a,s") + ny[,’:,](S/))]

[Slides from Fragkiadaki, 10-703 CMU]



Value lteration

Algorithm:
Start with V;'(s) =0 foralls.
Fork=1, .., H:

For all statessin S:

Vi (s) ¢ max ) | P(s'|s,a) (R(s, a,8") + 7V 1(s)

[Slides from Fragkiadaki, 10-703 CMU]



Value lteration

Algorithm:
Start with V;'(s) =0 foralls.
Fork=1, ..., H:

For all states sin S:
Vii(s) < max Y _P(s'|s,a) (R(s,a,s") + Vi (s"))

T (8) + arg maxz P(s'|s,a) (R(s,a,s") +yVi_1(s))

Find the best action according to one-step look ahead
This is called a value update or Bellman update/back-up

Repeat until policy converges. Guaranteed to converge to optimal policy.

[Slides from Fragkiadaki, 10-703 CMU]



Q-Value Iteration

Q’(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:
Q*(s,a) = Y _P(s'|s,a)(R(s,a,s") + ymax Q* (s, a’))
al
Q-Value Iteration:

Qry1(s,a) « > P(s|s,a)(R(s,a,s) + ymax Qi (s', a'))

[Slides from Fragkiadaki, 10-703 CMU]



Summary: Exact Methods

Bellman Q* (8, a) Q-value iteration

optimality ” . )
Fully known equations |4 (S) Value iteration
MDP
states
transitions

Bellman QW (37 a) Q-policy iteration
expectation -
equations V (S) Policy iteration

rewards

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete state and action space
Update equations require fully observable MDP and known transitions



Unknown MDPs?

Q’(s,a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:
Q*(s,a) = ) P(s'|s,a)(R(s,a,8") + ymax Q*(s',a"))
al
Sl
Q-Value Iteration:

Qri1(s,0) Y P(s'ls,a)[R(s,a,5") + ymax Qi(s',a"))

This is problematic when do not know the transitions

[Slides from Fragkiadaki, 10-703 CMU]



Tabular Q-learning

= Q-valueiteration: Qr+1(s,a) < Z P(s'|s,a)(R(s,a,s") + 7y max Qr(s',a"))

= Rewrite as expectation: Qri1 < Egp(s/|s,a) [R(s, a,s') +ymax Qx (s, a’)]

[Slides from Fragkiadaki, 10-703 CMU]



Tabular Q-learning

= Q-value iteration: Qr+1(s,a) < Z P(s'|s,a)(R(s,a,s’) + max Qi(s',a))

= Rewrite as expectation: Qri1 < Eyop(s/(s,a) [R(s, a,s’) +vmax Q(s a’)]
al

= (Tabular) Q-Learning: replace expectation by samples

= For an state-action pair (s,a), receive: s’ ~ P(s'|s,a) simulation and exploration

= Consider your old estimate: Qx(s, a)

= Consider your new sample estimate:

target(s’) = r(s,a,s") +ymax Qx(s’,a’)

error(s’) = (r(s, a,s’) +ymax Qx(s',a’) — Qr(s, a))

[Slides from Fragkiadaki, 10-703 CMU]



Tabular Q-learning

learning
rate

|

Qri1(s,a) = Qi(s,a) + a error(s’)
= Qr(s,a) + « (r(s, a,s’) + Y max Qr(s’',a") — Qx(s, a))

Key idea: implicitly estimate the transitions via simulation




Tabular Q-learning

Bellman optimality
Algorithm:
Start with QQo(s, a) foralls, a. Q*(s,a) = Ey [T(S7 a, S,) +7 IIlCLEILX Q" (3,7 a/)]
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = r(s, a,s’)
Sample new initial state s’
else:

target =7(s,a,s") + Yy max Qr(s',a’)
a

Qk+1(s7a) - Qk(sa a’) +a (T(Sa a, 8/) + ’YHE}X Qkﬁ(sl’ (1,/) - Qk(87 a'))
s+ s

[Slides from Fragkiadaki, 10-703 CMU]



Tabular Q-learning

Algorithm:
Start with QO(S, a) foralls, a. = Choose random actions?
Get initial state s = Choose action that maximizes Qk (8, a) (i.e. greedily)?

Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = r(s,a,s’)
Sample new initial state s’
else:

target =7(s,a,s") +ymax Qx(s’,a)
Qk-i—l(S? CL) — Qk(sa a’) +a (T(Sa a, 8/) + ’YHE}X ka(sl, CI,,) o Qk(87 CI,))
s« s

= &-Greedy: choose random action with prob. g, otherwise choose
action greedily

[Slides from Fragkiadaki, 10-703 CMU]



Exploration and Exploitation

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal
region, and never explore further.

r(s) = 4 ma%a Q(s,a)  with probability 1 — e
| random action otherwise

Gradually decrease epsilon as policy is learned.

[Slides from Fragkiadaki, 10-703 CMU]



Tabular Q-learning

Tabular: keep a |S| x |A| table of Q(s,a)
Algorithm: Still requires small and discrete state and action space

Start with Qo(s, @) forall's, a. How can we generalize to unseen states?
Get initial state s

Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s" is terminal:
target = r(s,a,s’)
Sample new initial state s’

= &-Greedy: choose random action with prob. g, otherwise choose
action greedily

else:
target =7(s,a,s") +ymax Qx(s’, a’)
a

Qri1(s,a) = Qi(s,a) + a (r(s, a,s’) + 7 max Qr(s',a") — Qr(s, a))
s« s

[Slides from Fragkiadaki, 10-703 CMU]



Deep Q-learning

Q-learning with function approximation to extract informative features from high-dimensional
input states.

Represent value function by Q network with weights w

Q(s,a,w) =~ Q*(s, a)

Qsaw)  Qsa.w - Qsa.w high-dimensional, continuous states
T + generalization to new states

~
T

w
s a
[Slides from Fragkiadaki, 10-703 CMU]




Deep Q-learning

0 Optimal Q-values should obey Bellman equation
Q*(s,a) = Eg |r+v max Q(s',a)" | s,a

@ Treatright-hand r + ~ max Q(s’,a’,w) as as a target

0 Minimize MSE loss by stochastic gradient descent

2
| = (r+ Y max Q(s',a,w) — Q(s, a,w))




Deep Q-learning Challenges

0 Minimize MSE loss by stochastic gradient descent

2 Q(s,a;,w) - Qs,a,w)
| = (r +v max Q(s',a',w) — Q(s, a, w))

0 Converges to Q* using table lookup representation

e But diverges using neural networks due to: w
@ Correlations between samples
" Non-stationary targets T




Deep Q-learning: Experience Replay

@ To remove correlations, build data-set from agent’s own experience

51,41, 2,52

/
52,d2,13,53 — S,a,I,s
53, d3, Ia, S4

exploration, epsilon greedy is important!
Sty dt, N't+1, St+1

@ Sample random mini-batch of transitions (s,a,r,s’) from D




Deep Q-learning: Fixed Q-targets

51,41, 12,52
0 Sample random mini-batch of transitions (s,a,r,s’) from D Sy, ao, 13,53
0 Compute Q-learning targets w.r.t. old fixed parameters w- S3,a3, 14, S4
M Optimize MSE between Q-network and Q-learning targets St At; Mt+1, St+1

2
Li(w;) = Es a5~ (r +vy max Q(s', ;w7 ) — Q(s, 3 w,-)) ] Qs.aw) - Qs.a,w)
a
\ 4 % J T
Y Y

Q-learning target Q-network /\/\

w

@0 Use stochastic gradient descent I
0 Update w- with updated w every ~1000 iterations



Policy Gradients

Formally, let’s define a class of parameterized policies ] — {mg,0 € R™}

For each policy, define its value:

JO)=E | _~'rim

>0




Policy Gradients

Writing in terms of trajectories  + = (g, ag, 70, 1, 01,71, ...)
Probability of a trajectory Reward of a trajectory
p(7;0) = mg(aolso)p(s1|s0,ao) r(1) = thrt

x mg(a1|s1)p(s2|s1,a1)

X 7r9(a2|52)p(33\32,a2)
X ...

t>0

= H P(St41|5¢, ar)mo(as|se)
>0

t>0

J(@) =K [Z ’Yt'rtﬂ-el = ETNp(T;O) [T(T)]




Policy Gradients

Formally, let’s define a class of parameterized policies 1 — {my,0 € R™}

For each policy, define its value:

J(@) =K Z’Yt'rt|ﬂ'9 = ETNp(T;Q) [T(T)]

t>0

We want to find the optimal policy g+ _ arg max J(0)
6

How can we do this?

Gradient ascent on policy parameters




REINFORCE Algorithm

Expected reward: J(6) = Krp(r;0) [ (7)]

= /T(T)p(T;H) dr

T




REINFORCE Algorithm

Expected reward: J(6) = Krp(r;0) [ (7)]

= / T(T)p(T; @) dr p(7;0) = Hp(8t+1|8t,at)ﬂ'0(at|5t)

T t>0

Now let’s differentiate this: VQJ(Q) — /T(T)V(,p(q-; 9) dr Intractable

T




REINFORCE Algorithm

Expected reward: J(6) = Krp(r;0) [ (7)]

= / T(T)p(T; @) dr p(7;0) = Hp(8t+1|8t,at)ﬂ'0(at|5t)

t>0

Now let’s differentiate this: VQJ(H) — /T(T)vep('r; 9) dr Intractable

Vop(T;0)

However, we can use a nice trick: Vyp(7;60) = p(7;0)
(736) = 2( p(7;0)

J

= p(7;0)Vglogp(r;0)




REINFORCE Algorithm

Expected reward:  J(6) = E, (.0 [7(T)]

= / T(T)p(T; @) dr p(7;0) = Hp(8t+1|8t,at)ﬂ'0(at|5t)

t>0

Now let’s differentiate this: VQJ(Q) — /T(T)vep('r; 9) dr Intractable

T

However, we can use a nice trick: Vyp(7;6) = p(7; 9)w = p(7;0)Vglogp(T;0)

If we inject this back: p(7;0)
VoI (0) = / ((7) Vg log p(7:6)) p(r: 6) dr

= Erp(ri0) [7(7) Vo log p(7;6)]



REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7—7 0) = H p<8t+1 |St, at)WG(at|5t)
>0




REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7—7 0) = H p<8t+1 |St, at)WG(at|5t)
>0

Thus: 10gp(7'; 9) — Z (logp(st+1 |5t, at) + log 7T9(at|3t))
>0




REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7—7 0) = H p<8t+1 |St, at)WG(at|5t)
>0

Thus: 10gp(7'; 9) — Z (logp(st+1 |5t, at) + log 7T9(at|3t))

t>0
Doesn’t depend on

And when differentiating: Vo log p(T; 9) - Z Vg log To (at |St) transition probabilities
t>0




REINFORCE Algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7—7 0) = H p<8t+1 |St, at)WG(at|5t)
>0

Thus: 1ogp(7'; 9) = Z (logp(st+1 |5t, at) + log W@(at|3t))

t>0
. e Doesn’t depend on
And when differentiating: Vi log p(7_3 ‘9) - E Vg log mg (at |St) transition probabilities

t>0
Therefore when sampling a trajectory, we can estimate gradients:

VoJ(0) =E;piri0) [7(T)Velogp(T;0)] = ZT(T)V@ log mo(a¢|s¢)

t>0




Policy Gradients

Gradient estimator: V@J(Q) ~ Z ’]“(T)Vg log g (at|st)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Pretend every action we took here

Pretend every action we took
was the correct label.

raw pixels hidden layer
here was the wrong label.

maximize:  10g p(y; | x;) maximize: (—1) % log p(y; | x;)

upP DOWN UP UP DOWN DOWN DOWN upP WIN
0 e .o F .90 g . o' .o LOSE
UP UP DOWN DOWN DOWN DOWN UP LOSE
DOWN UP UP DOWN UP UP WIN

i

HE N B




Policy Gradients

Gradient estimator: V@J(H) ~ Z ’]"(T)VQ log g (at|8t)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s,8),Va € A,s € 8,0 € R"
Initialize policy weights @
Repeat forever:
Generate an episode Sy, Ag, Ry,...,S7-1, Ar_1, Ry| following (|-, 6)
For each step of the episode t =0,...,7T — 1:
G} « return from step ¢
0«0+ 0’7th Vo log 7!'(At|Sg, 0)

epsilon greedy

[Slides from Fragkiadaki, 10-703 CMU]



Policy Gradients

Gradient estimator: V@J(G) ~ Z r(T)Vg log g (at|st)

Interpretation: t>0

- If r(trajectory) is high, push up the probabilities of the actions seen
- If r(trajectory) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really
hard - can we help this estimator?

[Slides from Fragkiadaki, 10-703 CMU]



Variance Reduction with a Baseline

Problem: The raw reward of a trajectory isn’t necessarily meaningful. E.g. if all
rewards are positive, you keep pushing up probabilities of all actions.

What is important then? Whether a reward is higher or lower than what you
expect to get.

Idea: Introduce a baseline function dependent on the state, which gives us an
estimator:

Vo (0) ~ > (r(r) — b(s:)) Vo log ma(ay|se)

t>0

e.g. exponential moving average of the rewards.

[Slides from Fragkiadaki, 10-703 CMU]



Actor-Critic Methods

A better baseline: want to push the probability of an action from a state, if this
action was better than the expected value of what we should get from that state

Recall: Q and V - action and state value functions!

We are happy with an action ain a state s if Q(s,a) - V(s) is large.
Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Vo (0) ~ > (Q™ (st,a¢) — V™ (s¢)) Vo log mo(as|s)

t>0




Actor-Critic Methods

Problem: we don’t know Q and V - can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning Exploration + experience replay

.. . e . Decorrelate samples
by training both an actor (the policy) and a critic (the Q function) Fixed targets

Critic: evaluates how good the action is

____________________________________________________

A3C Policy Learning Module £_(W,) —F D
i\Wi) = s a,r,s'~D;

2
(r+7 max Q(s', s w;) — Q(s, a; Wi)) ]

l (1 unit) ? U N o I\ )

Value Function Q-learning target Q-network
Q(87 a) I R ( | )
Policy Function ; - 7T0 dij
C Fully I (3 units) 77 (a | S) Actor: decides what actions to take
' connected LSTM :
bl i :
esunts) o Ve (0) = ) (Q7(st,a1) — V™ (s1)) Vo log ma(ay|se)

oTnnnononnooieninooo t>0
Variance reduction with a baseline
[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]



Summary: RL Methods

» Value Based
Value iteration

Learned Value Function
Policy iteration

(Deep) Q-learning Implicit policy (e.g. e-greedy)
+ Policy Based Value Function  Policy
Policy gradients - No Value Function

Learned Policy Actor

lue-B
Value-Based Critic

Policy-Based

» Actor-Critic
Actor (policy)

o Learned Value Function
Critic (Q-values)

Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]



Reinforcement Learning in Large Language Models
Actor-Critic, TRPO, PPO, and GRPO




Introduction

@ DeepSeek models leverage advanced RL algorithms to improve reasoning ability Key
@ algorithms:

Actor-Critic

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)
« Group Relative Policy Optimization (GRPO) - DeepSeek’s innovation

@ Applications in:

o DeepSeekMath (mathematical reasoning)
o DeepSeek-R1 (general reasoning capabilities)




Scaling Laws in Al

e More parameters (N)

e More training data (D)

e More compute (C)

@ Key equation (Kaplan et al. 2020, OpenAl):

anN ap
L(N, D) — (&) N (2) (1)
@ Observed across: N D
e Language models
e Vision models

¢ Multimodal systems

7
42
6 \ —— L=(D/5.4-1013)-009 | 5.6 —— L=(N/8.8-10!3)-0076
5 - 3.9 4
2
2 \ 3.6 40
= 4 A
=
3 < 3.3 3.2
F 3
3.0
2.4
L= (Cmin/2.3-108)70050
2 2.7
io-® 107 105 1073 10-! 10! 108 109 105 107 109

Compute Dataset Size Parameters

PF—dais, non—embeddini tokens non—embeddini



The Scaling Timeline

Figure: Scaling law curve ChatGPT Parameters
The number of parameters in successive models of ChatGPT has increased massively

—— Parameters
41 n
300B
100B
30B
10B
3B
1B

300M

GPT-1 GPT-2 GPT-3 GPT-4



Test-Time Compute

Definition
The computational resources allocated during inference to solve a task

Reason: Further scaling in the training phase becomes difficult due to the scarcity of data and
computational resources.

System 1: System 2:
e GPT-4, Deepseek-V3 e GPT-01, Deepseek-R1
e Fast, intuitive e Slow, deep thinking
e Limited reasoning steps e Multi-step reasoning
Key Insight

Performance can scale with inference compute independently of model size

Reference: Test-Time Compute: from System-1 Thinking to System-2 Thinking, Yixin Ji, Juntao Li, Hai Ye,
Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, Min Zhang, arkiv Mar, 2025



The Performance of Deepseek RI

OpenAl-01-1217 DeepSeek-R1-32B OpenAl-ol-mini DeepSeek-V3

@#w4 DeepSeek-R1
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Reinforcement Learning

State s, Reward r,

Action a,
Next state s,, ,

Environment

51 (il 52 ‘iz Learn policy:
& m ------ po(at|st)
; -
S1. a, Sy a, S3

TrajeCtory T= {Sll aq,Sy,03,*,ST, aT}




Notations

@ s: the state that inputs to the agent (In the LLM context, the state is the input prompt
+ already generated tokens.)

@ a: the action that the agent outputs. (In the LLM context, the action is the next token to
be predicted.)

@ my(s,a): a policy function. 6 is the parameters of the agent (usually a neural network in
the policy-based RL). In the LLM context, the 6 is the parameters of an LLM. 7y(s, a) is
the LLM'’s output probability distribution of the next token (a) with input tokens (s).

@ R or r: the reward under state s and action a. In the context of LLM, the reward could be
given by human feedback or another LLM.

@ v is a hyperparameter between [0, 1] that allows the model to focus on the reward of the
current step



“Expected Returns” Objective

Now we formalize the “Expected Returns” objective J(0)

J(0) = Err, [i 7t ' Rt+1]

t=0

Value Function V™(s) and Action Value function Q™ (s, a) defined as:

V() = B |7 Resa

Stzs} forall t=0,1,2,...
Q™(s,a) =Ez2, {vk-RkH Stzs,At:a] forall t=0,1,2,...

Advantage Function A™(s,a) = Q™(s,a) — V™ (s)
Q describes the expected return under the 7y, s and a, V describes the expected return under
mp and s, and J describes the expected return under mg




Recap: Policy Gradient

Directly optimize the policy my(als) using gradient ascent:

Vod(0) = E,[Vologmg(als)Q™ (s, a)]

@ Objective: Maximize expected return J(0) = E.,[>_, v rt]
@ Uses Monte-Carlo estimation of returns

@ Q(s, a) decide which action to be reinforced, Vg log mg(als) decide how to reinforce this
action (by updating policy network parameters)

REINFORCE Algorithm

@ Sample trajectory 7 = (s, a0, 10, -++, ST)
@ Compute returns G; = ZkT:tvk_trk
@ Update policy: 0 < 0+ a ), G:Vylog mp(at|st)

>

O
b
il
|
4
Je



Recap: Policy Gradient

REINFORCE Algorithm:

o Sample trajectory 7' from mg(a¢|s:)

VI(O) = Ernny | 207 Re1V log mo(atlse)

.
= >/ Viegmo(arlse) Y 7 Rira
k=t

@ Issue: We need to sample whole trajectory to get this term (Monte Carlo)

Make policy gradient learn slowly.



Recap: Actor-Critic Framework

@ Two components:

e Actor: Policy network ze(als), also . Reward
called actor model, decide which _>[ Environment
action to take for next step.

e Critic: Value network Vy(s), measure Action State
how good the present state is.

e Advantage function: A(st, at) = —

e Policy gradient update: TTD rrer
VoJ(0) = E[Vg log mae(als)A(s, a)] [ critic V]:——

e A(s,a) reflects how good the action we've : :
taken compared to other candidates.

e Using A(s,a) instead of Q(s,a) can make Figure: Actor-Critic architecture
the training more stable.




The Actor-Critic Networks in AlphaGo

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network
=
P, P, P, Ve ) P, (@ls) v, (s)

) °
=,
o

' . g

Policy gradient ] @

= L "

<

9
o s
Human expert positions Self-play positions
Figure 1 | Neural network training pipeline and architecture. a, A fast the current player wins) in positions from the self-play data set.
rollout policy p, and supervised learning (SL) policy network p,, are b, Schematic representation of the neural network architecture used in
trained to predict human expert moves in a data set of positions. AlphaGo. The policy network takes a representation of the board position
A reinforcement learning (RL) policy network p,, is initialized to the SL s as its input, passes it through many convolutional layers with parameters
policy network, and is then improved by policy gradient learning to o (SL policy network) or p (RL policy network), and outputs a probability
maximize the outcome (that is, winning more games) against previous distribution p, (a|s) or p,(a|s) over legal moves a, represented by a
versions of the policy network. A new data set is generated by playing probability map over the board. The value network similarly uses many
games of self-play with the RL policy network. Finally, a value network vy convolutional layers with parameters 6, but outputs a scalar value vy(s’)
is trained by regression to predict the expected outcome (that is, whether that predicts the expected outcome in position s'.

Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484489 (2016).




Trust Region Policy Optimization (Schulman, 2015)

The problem of policy gradient:
9
Large policy change destroys training

Improper learning rate causes vanishing or exploding gradient
Poor sample efficiency. PG needs over 10 million or more training time steps for toy
experiments.

—

Line search Trust region
(like gradient ascent)



TRPO

Key Equations Let my denote a policy with parameters 6. The theoretical TRPO update is:

i1 = argmax L(0, )

S.t. DKL(QHQ/() <4

where L(60y,0) is the surrogate advantage, a measure of how policy my performs relative to the
old policy mg, using data from the old policy:

mo(als)
7T9k(a|5)

-~

Surrogate Advantage

L(0%,0) = Es any, A0 (s, a)

and Dk, (0]|0x) is an average KL-divergence between policies across states visited by the old
policy:

Dki(6110x) = Esry, [Dre (mo(-|5)| |70, (-]5))]



TRPO and PPO

Trust Region Policy Optimization (TRPO), ICML2015

Constrained optimization to ensure stable updates: maxg E[ﬂi('ﬁ%)A(s, a)]

Mol \81S

@ Subject to KL-divergence constraint: E[KL(7o,,||me)] < 0

Proximal Policy Optimization (PPO) (OpenAl, 2017)

Simplified version with clipped objective:
LCLIP(0) = E[min(r:(0)A, clip(r:(6), 1- ¢ 1+ ©)At)]

e Where r1(0) = n;zeldﬁag ItSts)t)

e Using a simple clip function to take the place of KL divergence
@ Used in ChatGPT’s RLHF Algorithm



Teacherforcing

Supervision

Output .............
LLM

Prompt Generation

e Simple supervised learning

e Input =Prompt +Target[0:-1] Input

e Loss(output, Target[1:])




Outcome supervision
Output . . .

= SUDPENVISION s

e What if we only supervise the final LLM
result?
mput [ W EEENE
® Generation Prompt Generation

¢ Loss(Generation)
e Teacher-forcing not possible
e No supervised loss

e Solution: RL



Outcome supervision

= SUDPENVISION s

Reinforcement Learning  output N
. LLM pg(x,_H | C, Xx;.. .x[)

LLM
N
pox|€) = Hpe(xm €, xp...,) mput [ HEE 1 1 1
=1

Prompt Generation
- Sampling / Generation

Ky = Dl # €555 )

- MDP
N

EX~p9(-IC) [ 2 r(x| ¢, x;.. .xt_l)]

=1

R(¢,x)



Interactive Digital Agents

O

¢ Train LLMs that interact with API'son
the users behalf

)

User

| Agent |

Agent

Agent

Agent

I owe Alice and Bob money for the trip to Maui. They texted me
to let me know the amount. Venmo them what I owe.

v

# Let’'s find Alice’s recent messages
messages = phone.search_text_messages(“Alice”, “$”)
print(messages)

[

{“from”: “Alice A”, “content”: “Gym at 8am?”, ...},
{“from”: “Alice B”, “content”: “You owe me for a
third of the $330 hotel bill.”, “number”: ...}
]

# It looks like we owe Alice B one third of $330
alice_amount = 330.0 / 3
alice_phone = messages[1] [“number”]

# Let’s send Alice her money

alice_venmo = venmo.search_users(alice_phone)
venmo.create_transaction(alice_venmo, alice_amount)

$110.0 sent to Alice B

# Let’s find Bob’s recent messages ...

Done. I sent Alice B $110 and Bob C $50.



Application of PPO in LLM
Nisan Stiennon, Learning to summarize from human feedback, NIPS 2020, OpenAl.

© Collect human feedback © Train reward model © Train policy with PPO

A Reddit post is

One post with

A new post is

sampled from two summaries sampled from the
the Reddit m— judged by a dataset.
TL;DR dataset. —_ human are fed

to the reward

model.

l l The policy
Various policies The reward generates a
are used to model @ summary for the
sample a set of calculates a post.
summaries. reward r for

Two summaries

! l

each summary.

2

@
i’

l

] - |

= = - Gl :
LU ) s
ﬁ/_) The loss is l The reward

are selected for
evaluation.

calculated based model calculates

on the rewards a reward for the ;
and human label, summary. ;
and is used to

A human judges
which is a better
summary of the

loss = Iog(o(rj— r.)
post.

update the

\L reward model. T

% is better than k”

The reward is J,
used to update
the policy via

“j is better than k” PPO. 5



Step 1

Application of PPO in LLM

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon

landing to a 6 year old

Y

e}

Z

Some people went
to the moon...

InstructGPT OpenAl2022

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity. Explain war.

o o

Moon is natural Paople went to
satellite of the moon...

. J

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs




Reinforcement Learning in GPT-o1

Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning
Perspective, Zhiyuan Zeng, et al, 2024

State

N E|
I %
H

Reward

Environment

Policy

Action

<

Question
Stepl: xxxxx

State | _

Step t: xxxxx | | @

Reward

Environment

N\ E |
mt(als)

Policy
Step t+1

N

Figure 3: The visualization of the interaction between agent and einvironment in reinforcement
learning for LLMs. Left: traditional reinforcement learning. Right: reinforcement learning for LLMs.
The figure only visualizes the step-level action for simplicity. In fact, the action of LLM can be either
token-, step-, or solution-level.




Group Relative Policy Optimization (GRPO)

@ Proposed in DeepSeekMath (arkiv 2402.03300v3)

@ Key improvements over PPO:

e Eliminates critic network - uses group statistics as baseline
o More memory efficient (no separate value network)
o Better for mathematical reasoning tasks

@ Objective function:
Jorpo(0) = E[£ Y1y min ( molola) A, clip (M l1—€1+ 6) AAi) — BDkw(mo]|mrer )]

0414 (0119) 0,4 (011G)’

o A; computed from group rewards

Ao i mean({r, r2,...,rc})
I Std({r17r27°°'7rG})




GRPO

o]
| mg(otlq, 0<) | mg(otlg, 0<t)
Jrpo(0) =E[qg ~ P(Q),0 ~ g _..(O )— min Ag, cli ( ,1—¢g,1+¢|A
( ) [q ( )I emd( |q ]l | ; ﬂeold (Oth, O<t) tr JTBOM (Oth, O<t) t]7s
I Reference KL \\‘\\\\\\
PPO Model &@ 'l r \
Reward |/ ‘
Pollcy Model }[ GAE H A
9 Model Value ' -
il R

GRPO \\\‘\\\\ Frozen
Referencc ‘ - Models
Model L
Policy Reward Group [ A, ]
q Model Computation

E

Tereo(8) = Elg ~ P(Q), {01}S 1 ~ 7, (Olg)] Lt

0,4 (O[,t|ql 01,<t) Oy (oi,th, 0i,<t)

ri—mean(r)

E & A =Ti=

61 & T me(oielg 00 76(0i¢19, 01 <t) )
—Z min A, clip J1—¢,1+¢|A;c| - BDki |7gllayes] ¢

std(r)




PPO vs GRPO

Feature

Models Trained
Training Method
Computational Cost
Training Speed

Self-Verification

OpenAl o1 (PPO)

2 (policy + critic)

Compares responses one by one
High (training two models)
Slower

Weak

DeepSeek R1 (GRPO)

1 (policy only)

Ranks multiple responses at once
Low (training only one model)
Faster

Strong (better ranking method)



GRPO in DeepSeekMath

@ Applied to 7B parameter model

@ Training details:
o 144K math questions (GSM8K & MATH)
e 64 samples per question
e Batch size 1024
o KL coefficient 0.04

@ Results:

o GSMS8K: 82.9% — 88.2%
o MATH: 46.8% — 51.7%
e Out-of-domain improvements too

50

MATH Top@1 Accuracy
w B
=} o

N
o

[y
o

Gemini-Ultra
GPT-4 API DeepSeekMath-78B ;k
/
. ’l
GPT-4 early version /I
Qwen-728
LIemma-34E}/"
Mistral-7B/,w'
Qwen-148B _-®
WizardMath-70B ’,o’
- e
LLaMA1-65B __-=~""
oe-""
2023-04 2023-07 2023-10 2024-01

Date

Figure: Performance improvement with
GRPO on the MATH dataset



RL-based Reasoning MLLM:
What has the community done?
What could the community do next?

=

L |

""The senses are the organs by which man perceives the world, and the soul acts
through them as through tools."






First Success: Multimodality

\\*‘,““‘“‘%

Vision (perceptlon) : Vision (Temporal) : Video
R1-V Image  orpink-MR1 Temporal-R1
VLM-R1 Think or Not Think SEED-Bench-R1
R1-Vision OpenVLThinker Video-R1
MMRI1 Reason-RFT TimeZero
Visual-RFT Q-Insight Open R1 Video
MM-Eureka R1-Zero-VSI Open-LLaVA-Video-R1
Seg-Zero Ocean-R1 ...
Vision-R1 ...

VisualThinker-R1-Zero

Audio

Audio-Reasoner
R1-AQA




First Success: Multimodality
—

Medical Vision Omni Graphical User Interface Metaverse
MedVLM-R1 R1-Omni UI-R1 MetaSpatial
Med-R1 s aeeeee e




Second Success: Diverse Task——Take Vision as an Example
R1-V

Training (CLEVR-A) 00D Testing (Super-CLEVR)

In the given diagram, if angle 1 has a measure In the given diagram, if angle B measures 20°
of 35.0 degrees, what is the measure of angle and angle C measures 30°, and MP and QN bisect
2? AB and AC perpendicularly, what is the measur.

<answer> 145° </answer> <answer> 80° </answer>

Vision Counting Geometry Reasoning

train/rewards/accuracy_reward train/rewards/format_reward train/kl

& | [ A A A ﬁ ‘Jﬁﬂf I
| ﬂ\ \‘/V\“f\/ “‘V\J\\vﬁw “"\ cﬂ‘ /\/\‘V\f\ﬁﬂ \v’\'/\/\\‘h/\vwfu fv V’vA“j \,”\‘)‘/V »m \ J\NA‘V’,\/ ‘v’ JV/

’ 14
0.006 12
H“ \/

[ ' 1
[V 0.004 ‘ 08
06

. . /\VMNIL s /MW/\/W\'
02

step Step

] 0

50 100 150 200 0 50 100 150 200

0.8
07
M 0002
o6 [
|
05 Step N
o 50 100 150 200 0

train/completion_length train/reward_std train/loss

. /v W
o | N
5 \) 0s vw

\ 1
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MV Ay Wyt /
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Second Success: Diverse Task——Take Vision as an Example

VLM-R1

Version

VLM-R1-Qwen2.5VL-3B-
OVD-0321

VLM-R1-Qwen2.5VL-3B-
Math-0305

VLM-R1-Qwen2.5VL-3B-

REC-500steps
Training on RefCOCO/+/g

Base VLM

Qwen2.5VL-
3B

Qwen2.5VL-
3B

Qwen2.5VL-
3B

Testing on out-of-domain data LISA-Grounding

s

- ;R L
i ol @ Pl e L v 3
B e TR SEREPTN TOMAS

Checkpoint

omlab/VLM-R1-Qwen2.5VL-3B-
OVD-0321

omlab/VLM-R1-Qwen2.5VL-3B-
Math-0305

omlab/Qwen2.5VL-3B-VLM-R1-
REC-500steps

Performance on in-domain test data
(Avg Acc on Val split of RefCOCO/+/qg)

87.31

84
100 200 300 400 500 OO

Task Type

Open-Vocabulary
Detection

Multi-Modal Math

REC/Reasoning-
Grounding

Performance on out-of-domain test data
(Acc on LISA-Grounding)

63.14

GO

3
& 56.51

55

50 ! 1 { ) | |
100 200 300 400 500 OO

Steps 5+eis



Second Success: Diverse Task——Take Vision as an Example

Visual-RET

(a) Visual Instruction Tuning

Domain-specific Data: Wild Data: General Data:

Data-driven Fine-tuning

S (- =
MELEE W ERL C &+
¥ ﬁ Prompts
- =
Limited Data (10-1000) s E EHE Output
Policy Optimizati
_ Input i ot bl Verifiable Reward
r"T" Prompts . Tol), i h : 1, if Peare = GT e
+ = i L‘;@?M Reasoning Rell:?'f‘::::;ﬂn;ﬂf - {f(o? oih'f,?if i " ={ 0, otherwise
B S
Limited Data (10-1000) Output Completions ) IoUV Reward i CLS Reward

(c) Applications of Visual-RFT
Detection : Grounding

I

I

Few-shot Detection

Open Vocabulary Detection

Reasoning Grounding

' Question: Output the bounding box in the image corresponding
to the instruction: the pokeymon that can perform Thunderbolt.
- Output the thinking process in <think> </think> and your grouding
box. Following "<think> thinking process </think>
<answer>(x1,y1),(x2,y2)</answer>)" format.

'%*’ Reasoning: <think> The instruction is to find the bounding
1 A&/ box of the Pokémon that can perform Thunderbolt.
Thunderbolt is a move that can be used by several Pokémon. In
the image, there are several Pokémon, including Pikachu, which is
known for its Thunderbolt move. Pikachu is located in the bottom
right corner of the image.</think>
<answer>(696,300),(999,999)</answer>

Classification

Fine-Grained Few-shot CLS

Question:

This is an image containing
a plant. Please identify the
species of the plant based
on the image.

| Reasoning: <think> The image appears to be
0% ?
N\

of a wallflower, which is characterized by

its bright yellow flowers and small, greenish-brown

buds.The petals are often orange or red at the
base, and the flowers are often clustered together.
The leaves are green and have a slightly wavy
edge.</think> <answer>wallflower</answer>



Second Success: Diverse Task——Take Vision as an Example
Seg-Zero

In-domain test

Vision & Language Prompt

RL+CoT
User: Who is most likely to be the player in this
picture? HE
SFT 70.8 +0.4
Directly Segment I Baseline <]

Assistant: Sure, it is < SEG >. In this image, [Captioning Part]

Reasoning-Chain Guided

Out-of-domain test

RL+CoT
Assistant: The player is most likely the one wearing
the baseball uniform, including the helmet, belt, RL
and baseball glove. The person kneeling down is SET
likely the coach or another adult, as they are not
wearing a uniform. So, the answer is [SEG-REF] Baseline
In this image, [Captioning Part]|
Vision & Language Prompt With CoT Without CoT

N >

User: Who is Thinking: The speaker is the person standing at the
most likely to be  podium, who is the central figure in the image. The
the speakerin  podium is a raised platform, typically used for speeches

AW.0 R

(
!

i i p

! 10 5B
: % {ﬁm
i &/

i 3

.

N

A & e
L Y this picture? or announcements. ..., and the podium is the most

relevant object to identify the speaker.

Answer: [SEG-REF]  Answer: <SEG>




Second Success: Diverse Task——Take Vision as an Example

inputs prompts completions rewards advantages KL penalty .
The landmark in Paris. -> ,{ aq .
Xtxt > o) 2 | — mean H . .pohcyi
e i - \ - s az i !
Multi-Modal |2 ~|| m as | i i
g LLM | H {4 Ref policy !
h -> J Ag N~
\_ 4 E 5 .
reasoning chain seg-ref : ObJectwe
!/ ---------------------------------------------------------------------------------------- A 7Z """""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Prompt Encoder 3% <think> SN hhon
=R *"“;""
L <\think> BN
.. , i <answer> . points .
Vision Decoder L 1.0 <*, %> 1
Backbone - N o e | <\answer> > 0. 57 < Dthresh
N
& Trainable 3 Frozen segmentation module Format




Second Success: Diverse Task——Take Vision as an Example
VisualThinker-R1-Zero

CVBench: Cambrian Vision-Centric Benchmark

2D and 3D understanding

Training Steps of Reinforcement Learning

ReasoninP. Pattern
«4— The model jnitially generates
html code/for reasoning.

< Emergence of Self Reflection
... But wait! | can think of something else. ...

Step




Second Success: Diverse Task——Take Vision as an Example
Think or Not Think

Image Classification

StanfordCars Response Length SUN397 Response Length DescribableTextures Response Length

150 ‘

MW w Mﬂu ’\",Nv N”w UML JWM N«J w\\ w | Cattech1011268 035 (MU 146 os0 JMEM o055 55 (315 :: e )

Improvement of No-thinking-RL compared with CLS-RL

l Imagenet- 007 049 461 -027 098 065 041 224 071 053 810 021

DescribableTextures- 436 231 361 -069 068 333 -488 691 499 1.45

{ W
| W»meﬂ

(a) StanfordCars (b) SUN397 (c) DescribableTextures | E - 'b | ,

Food101- 253 012 3.07 225 184 483 -082 592 -028 174 -189 176

OxfordFlowers- 278 028 402 022 108 503 -041 547 165 198 -150 1.87

& '\S & S '\6\' QS A S
S @ Y v 388 077 254 -189 027 179 -112 | Ay 376 214 | 678 121 N
(§§ \\Q‘;Q ‘&IQ @G}. § 04\5 <S&b & é“ é\Q . éo% OxfordPets - 3.
\$ C? Q Q}Q QO <<\ o* ol %o o QY- Y:\ StanfordCars 4.95 573 297 47 H
Qwen2VL 708 8856 5479 4568 77.54 6443 7389 3577 6383 6622 4275 6221 o .. HoE. .. B
SFT 41.60 9391 71336 75.16 75.75 96.87 85.80 71.13 41.66 63.81 60.15 70.65 ' b ' e '
CLS-RL 92.24 98.09 6992 4946 8894  86.56 87.24 80.24 8457 82.1 7441 81.25

UCF101- 307 089 148 105 180 390 -311 317 228 172 -1.98 130

No-Thinking-RL ~ 92.31 9846  73.52 58.02 90.78 91.6 86.13 925 86.72 8382 7441 84.39

FGVCAircraft- 270 049 349 -045 113 284 -2.83 250 214 000 171 l_10
Model Total Accuracy  Count Acc  Relation Acc  Depth Acc  Distance Acc ST LF ST & &S
& (,"\‘ v\é@ & KO ,@&Q o'("o o&o ) \)(6\0?'
L 4
No-Thinking-RL 0.7676 0.6967 0.8446 0.8067 0.7383 o@;,é& °
VisualThinker-R1-Zero ~ 0.7036 0.6612 0.8338 0.6850 0.6367



Second Success: Diverse Task——Take Vision as an Example

Route APPpPr
Plan Order

Obj.  Abs. Obj. Room
Count Dist. Size Size

Eval.
Mode Avg

Rel.
Dist.

Rel.

Methods Dir.

Question: Measuring from the closest point of each object, which of these objects (stove, tv, table, sofa) is the closest to the stool?
Options: A. stove B.tv C. table D. sofa
Ground Truth: D
Vanilla-mode: C -
Think-mode:
To determine which object is the closest to the stool, let's analyze the positions of the objects in the video:
1. The stove is located on the left side of the kitchen.
2. The TV is located on the right side of the kitchen. !
3. The table is located in the center of the kitchen.
4. The sofa is not visible in the video. &/
Given this information, the closest object to the stool is the table. So, the correct answer is: C. table.

=Y f‘;{ =

L?L’.u

k

Object Count Relative Direction

Quest H tomsd (s)in th o Question: If I am standing by the shelf and facing the shower is the
uestion: How many trash can(s)in the room?

bicycle to the left or the right of the shower?

Open-source

Qwen2-VL-2B
+ SFT

+ DPO

+ vsGRPO-T
+ vsGRPO-O
+ vsGRPO-T
+ vsGRPO-O
+ vsGRPO-V

)= < Q<<

/_
-

233
29.6
23.9
26.1
28.0
29.6
312
35.4

214
29.6
21.7
247
26.2
35.0
34.6
53.6

34 323
235 474
3.7 3438
10.7 37.4
16.4 448
28.2 347
225 448
29.9: 527

31.1
33.5
324
36.2
38.2
25.2
33.7
434

26.7
26.9
27.1
27.3
27.0
28.0
294
28.1

277
28.3
28.5
295
29.3
38.5
41.8
30.9

24.7
28.8
24.2
257
242
28.5
26.8
26.8

18.9
18.6
18.6
17:9
18.2
18.7
15.8
18.9

Qwen2-VL-7B
+ SFT

+ DPO

+ vsGRPO-V

85>
38.1
326
40.7

39.4
44.7
39.1
59.9

25.0 25.8
27.6 46.1
252 265
29.6 50.8

43.2
50.4
442
48.3

32.6
34.0
32.6
354

30.9
35.7
30.9
35.6

27.8
33.0
29.3
34.0

32.6
33.4
33.3
31.5

IVL2-2B

274

21.8

249 220

35.0

33.8

442

30.5

i |

S e LNV-7B 356 485 140 478 242 435 424 340 306
Object Size Absolute Distance IVL2-40B 360 349 269 465 318 421 322 340 396

Question: What is the length of the longest dimension (length,width, Question: What is the distance between the shower and the kitchen

or height) of the coffee table, measured in centimeters? counter (in meters)?

Answer: 6.1

Answer: 113

Relative Distance
Question: Which of these objects (sink, pillow, bed, guitar)is the
closest to the bicycle?

Room Size
Question: What is the size of this room (in square meters)?

Answer: 47.9
Answer: sink

LNV-72B

A< | €« 9 <S|<

40.9

48.9

228 574

35.3

424

36.7

35.0

48.6

Close-source

GPT-40
Gemini-1.5 Pro

<<

34.0
48.8

46.2
49.6

53 4338
28.8 58.6

38.2
49.4

37.0
46.0

413
48.1

31.5
42.0

28.5
68.0




Second Success: Diverse Task——Take Vision as an Example
MMR1, MM Eureka

Visual Math Reasoning

Model size  MathVista  MathVision LogicVista MathVerse V. MathVerse Model Base Model MathVista MathVerse MathVision OlympidBen K12
ch
Close-sourced
st T i G 2 26 G . Qwen2.5- - 68.2 47.9 25.4 15.3 36.0
VL-7B-
Gemini-2.0-flash - 704 43.6 52.3 47.8 - Instruct
Claude3.7-Sonnet - 66.8 41.9 58.2 46.7 - _
Qwen2.5- - 74.7 49.4 40.0 33.3 44.6
R1-related VL-32B-
LLaVA-CoT 118 52.5 19.9 396 226 = S
Open-R1-Multimodal 7B 60.6 - - - - InternVL2.5 - 64.4 39.5 19.7 8.0 24.8
Mulb 78 63.1 -VL-8B-
el ' ) ) ) ) Instruct
LMM-R1 3B 63.2 26.4 - - 41.6
InternVL2.5 - 71.9 49.4 31.8 29.3 37.2
R1-Onevision 7B - 26.2 - - 441 VL-38B-
MM-Eureka 8B 67.1 222 - - 40.4 Instruct
MM-Eureka 388 64.2 26.6 = = 48.9 MM- InternVL2.5 67.1 40.4 22.2 8.6 27.0

EUREKA- -7B-Instruct
InternVL-8B

Open-sourced

Ovis2-8b 8B 71.8 25.9 394 423 -
MiniCPM-0.2.6 - 719 517 360 350 i MM- Qwen2.5VL 72.7 (+4.5) 48.3 (+0.4) 25.5(+0.1) 26.6(+11.3) 49.0(+13.0)
e — EUREKA- -7B-
VITA-1.5 7B 66.2 19.5 38.9 - 234 Qwen-7B Instruct
) (flush)
Qwen2.5-VL (official) 7B 68.2 254 47.9 411 -
Qwen2.5-VL (reproduced) 7B 67.5 256 46.8 425 46.9 MM- Qwen2.5VL 73.0 (+4.8) 50.3 (+2.4) 26.9 (+1.5) 25.3(+10.0) 48.6 (+12.6)
EUREKA- -7B-
Ours Qwen-7B Instruct
MMR1-math-v0 78 71.0 302 50.8 45.1 498 (clear)



Second Success: Diverse Task——Take Vision as an Example

Reason-RET

Visual Counting, Structure Perception, Spatial Transformation

S$1: SFT-based Activation \T Y

2

Problem

______ =

A
‘ | KL Divergence

Visual Reasoning COT Dataj

SFT for Limited Steps ‘.

| ——

[
1
1
1
1
\

Policy

1
!
I
1
|
Text- Prompt :
1
1
1
1
1
1
1
1

Model

2

Reference !
Model |

Sampled Candidate Responses

Format:

Format Reward

<think> {Reasoning Process} </think>
<answer> {Final Answer Here} </answer>

1,

% Reormar = [0

if Answer adheres to format
otherwise

—

Prompt: You are a visual counting
expert. Given the <image> in front
of you, if I add two large buses, and
i then remove all the bikes, now how
i many buses are there in the table?

GT: <answer> 4 (as example) <answer>

__={1'

0,

Answer = GT
otherwise

Prompt: You are a visual geometry expert.
Given the <image>, you should solve the
problem as shown below: {problem}, and
provide the answer in LaTeX format or as a
floating-point number?
GT: <answer> 3.14 or m (as example) <answer>
1, |Answer — GT| < €, * |GT|
R,.. = {COSINE Type, between €, = |GT| and €; + |GT)|
0, |Answer — GT| > €; = |GT|

Prompt: You are a spatial visual reasoning
expert. Given the center-view <image> of initial
state, the center-view <image> (or the left-view
<image> or the right-view <image>) of final
state, and the {Func List}, you should
determine a sequence of transformations that
can achieve the final state.

GT: <answer> {sequence of function-type steps} <answer>

ion

LR:‘“ = Full matching reward + Partial matching reward




Third Success: Better Algorithms——Take Vision as an Example
R1-VL

4 Question: In the given diagram, triangle Answer: Step 1: Since AD is a median, it divides triangle ABC into two equal areas: ABD and ACD. Step
ABC has AD as its median and point E is 2: Segment AE is half of AD, splitting triangle ABD into two triangles of equal area: ABE and BED. Step
the midpoint of AD. If the area of triangle 3:The area of triangle ABD is half of triangle ABC, which is frac{12}{2} = 6. Step 4:Since E is the
ABC is 12, what is the area of triangle midpoint of AD, triangle ABE is half of triangle ABD. Therefore, the area of triangle ABE is frac{6}{2} =
i P2 “l  ABE? 3. The final answer is 3.
Step-w1se Group Relative POhcy Optlmlzatlon e Soﬁ key.step matching .......
Group of generated reasoning paths Reward:Function Rewards
................ v
{ ; e 3
10 (W) 1 1 ] & 1
e [ a; H az H s ]_{ '" HAHSWCI‘. 3 ] R Step b Group
: : easoning Accuracy
5 R d Advantage
Warm-up o | Sitish &
i : 2 000 . —_ > 2 o A
Q Policy MLLM g ¢ [ g H az H as |—>| Answer: 6 ] p ‘ N :
Step-wise .
i ; Reasoning Validity =
Reward
A
‘- Reasoning completeness and logic evaluation -
(a) Step-wise Reasoning Accuracy Reward (b) Step-wise Reasoning Validity Reward
s N\ N\
Pre-extracted key steps with || Soft key-step matching : #Description 2 #Rationale > # Stepl > ... > #Step N> #Answer.
Augmentations: #Descriptf'on: The image shows ....; #Rationale:| | | Reasoning completeness
1. AD is a median; median is AD || The question asks for the area...; #Stepl: ... we #Description 2 #Rationale > #Answer. X Missing reasoning steps
2. equal area; ... find AD is a median of ...; #Step2: ... AE splits Description = 4 Step] = .. = #Step N=> fidnswer X Missing rationale
3. AE is half of AD; AE=1/24D triangle ABD ...; #Step3: ... The area of triangle | | ™ P . . P P )
4. frac{12}{2} =6;12/2 =6, ... ABD s 12/ 2 =6, ..., and the area of triangle ii. Reasoning logic o o o -
5. E is the midpoint; ... ABE is frac {6} {2} = 3. #The final answer is: 3. | | #Description 9r#Rat§qr_lgle 91I1f4_}1_swer > # Stepl ... 2 #Step N.| X
6. frac{6}{2} =3;6/2 =3, ... Step-wise Matching score: 3/6 #Description 9: # Step3 2 #Rationale > ... > #Step 1 2 #Answer X
\. J L J L hnnrcmmccccccc s rr e e e e e e ———————— a




Third Success:

Straight-A students
Year Students

Question: ... According to
2008 8 the table, what was the
2009 i1 rate of change between 2010
2010 6 and 20117
2011 9
2012 2 Answer: 3

B
A~

(P’ Captioning Model
(Qwen2.5-VL-3B)

—

Caption: The image is a table
Here is the data presented in the table:

| Year | Students |
f f i
| 2008 | 5 |

| 2009 | 11 |

| 2010 | 6 |

Text-based Reasoning Model
(DeepSeek-R1-Distill-Qwen-14B)

b Reasoning 1 —> Answer 1

_) (' Reasoning j —>|Answer j

- —1

Reasoning k —> Answer Kk

Verify answer

& ’D' SFT-Iter] Data:
{Image, Question,
Reasoning, Answer}

—

Iterative Self-Improvement

SFT-Iter(i) GRPO-Iter(i)

RL
) > @ —
= Exploration = £
and generalization 2
S Q
e o
n °
7 =2
2. ©
==
g
Guide RL search space |' £ ;), B
@& < e
= s
Base Model SFT-Iter(i+1) Data

(Qwen2.5-VL-7B)

Better Algorithms——Take Vision as an Example
OpenVLThinker: Iterative Self-Improvement

Progressively
challenging
question source







To Do 1: Focus Further than Textual Modality

rotation Initial

Random Crop Affine Diffusion (Add Noise




To Do 2: Give Attention to Multi-modal Asymmetric

Latent space




To Do 3: Call for Multimodal Reasoning Agents

Environmental Aware Multi-Agent System




References

1. Awesome RL-based Reasoning MLLMs, Sun Haoyuan, Tsinghua University, https://github.com/Sun-

Haoyuan23

2. Multi Modal Machine Learning, 11-777 « Fall 2023 « Carnegie Mellon University

3. Reinfocement Learning and LLMs, Philipp Krahenbuhl, UT Austin

4. Reinforcement Learning in DeepSeek Models Actor-Critic, TRPO, PPO, and GRPO, Yanjie Li Hong

Kong Polytechnic University



https://github.com/Sun-Haoyuan23
https://github.com/Sun-Haoyuan23
https://github.com/Sun-Haoyuan23

Thanks




Back to Reasoning: Interactive Reasoning

Task-independent Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

[...] having the correct key can open the lock [...]
[..] known lock and key device was discovered [...]
[...] unless the correct key is inserted [...]

Action

/—>

Pre—trainingl

Vkey Vskull Vladder Vrope

Pre-trained Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
belt, jump to the yellow rope and again
to the platform on the right.

Environment

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]



Language-conditional RL: Instruction Following

Language specifies the task

Train

Fusion

Go to the short red torch .

Go to the blue keycard Allgnment

Go to the largest yellow object

Go to the green object Ground la Nnguage
Recognize objects
Navigate to objects

Test

Generalize to unseen objects

{

Go to the red keycard

Go to the tall green torch
. \
Go to the smallest blue object

Go to the green torch

y
>

[Misra et al., Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. EMNLP 2017]
[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]



Language-conditional RL: Instruction Following

e Gated attention via element-wise product

Image Representation ) ] ] )
= £l Bconv) Gated-Attention Multimodal Fusion Unit
Xy f ( 651 CON D) i S S = i o ey o i g g g ey g oy R e

1
Mgy (xp, %) = M(a)Ox, :
1
To policy
4‘(‘} learning .
Flodule Fusion

Alignment
Ground language
Recognize objects

Instruction
Representation
x, = 9g(L; Ogru)

a, = h(x) M(a)
Attention Vector

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]




Language-conditional RL: Instruction Following

EASY | | MEDIUM HARD

O O
00000 O o ©
) N, O O

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]




Language-conditional RL: Instruction Following

Representation *
x, = g(L; Ogru)

Grounding is
important for
generalization

armor blue armor, red pillar

-> blue pillar

‘ pillar

il

|

I"‘

y = torch
i

—— skullkey

OV 6 A SANIRANIINIANASHIIPIIAIHHHPANIANANARRNIRARNMRRROEES

[Chaplot et al., Gated-Attention Architectures for Task-Oriented Language Grounding. AAAI 2018]



Language-conditional RL: Embodied QA

Navigation + QA

g Q: What color is the car?

M w*, gl & nﬂﬂﬂ"l
| e

II TURN LEFT

[Das et al., Embodied Question Answering. CVPR 2018]



Language-assisted RL: Language to Rewards

Language specifies the rewards rather than actions

“build an L-like shape

JetBlue ‘ Delta

longest stop 2h longest stop 2h
price $100 price $10

.u.e

“I prefer JetBlue,
even if it’s
expensive”

|

Preferences

Jump over the skull (Lin et al. 2022)

while going to the

from red blocks” left”
Goal specification Reward shaping https:/arxiv.org/abs/1806.01946,
(Bahdanau et al. 201 9) (Goyal et al. 2019) https://arxiv.org/abs/1902.07742,

https://www.ijcai.org/proceedings/2019/331,
[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019] https://arxiv.org/abs/2204.02515



http://www.ijcai.org/proceedings/2019/331

Language-assisted RL: Language to Rewards

Language specifies the rewards rather than actions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

«— “Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the
game and describe entities

Montezuma’s
revenge

Intermediate rewards to speed up learning

[Goyal et al., Using Natural Language for Reward Shaping in Reinforcement Learning. IJCAI 2019]



Language-assisted RL: Domain knowledge

Language as domain knowledge — instruction manuals

Game Kingdom View Orders Advisors World Cheat Civilopedia

[ 4 Giroomy bilag

S

New: Y_orlg )

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]




Language-assisted RL: Domain knowledge

Language as domain knowledge — instruction manuals

Map tile attributesa

- Terrain type (e.( yuntain, etc)

The natural resources available where a population - Tile resources (&g oan, wildlife, etc)

settles affects its ability to p —;and goods. City attributes:
1 i i ; - City population
BUI'/d your city on a plalqs o rasslandlsquare with B e s
a river running through it if possible. T
- Unit type (e.g., worker, explorer, archer, etc)

- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-

description, or background

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]



Language-assisted RL: Domain knowledge

Language as domain knowledge — instruction manuals

Phalanxes are twice as effective at defending cities as warriors. /

Build the city on plains or grassland with a river running through it. /

e You can rename the city if you like, but we'll refer to it as washington. ReIeva nt sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road E built, use the settlers to start improving the terrain.
S 5 § A A A A A
e When the settlers becomes active, chose build road. A: action—description
s s s A A A

S: state-description

e Use settlers or engineers to improve a terrain square within the city radius

A S¥X A A 5 AX S S S S

[Branavan et al., Learning to Win by Reading Manuals in a Monte-Carlo Framework. JAIR 2012]



Summary: Interactive Reasoning

Instruction following Embodied QA

£ Q: What color is the car?

Train

Go to the short red torch it C] I o |'|’ i } C]
Go to the blue keycard : ©0) i (]

Go to the largest yellow object &

Go to the green object

Test

Go to the tall green torch
Go to the red keycard
Go to the green torch Go to the smallest blue object

Reward shaping

The natural resources available where a population
settles affects its ability to produce food and goods.
,,Jum over t he Bu::ld your c{ty ona pIair?s or gra;sland square with
«— p a river running through it if possible.
skull while going

to the left”

Figure 1: An excerpt from the user manual of the game
Civilization II.

[Luketina et al., A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019]



Interactive Reasoning Challeng

es

Open
challenges

Learning from open-ended manuals

[Atari Learning Environment]

ALIEN
20th Century Fox
ames of the Century
(picture of the ALIEN movie poster)
"In space no one can hear you scream
Game Instructions
Fox Video Games

ALIEN

TO SET UP: Set up your video computer system and left joystick controller as
instructed in your manufacturer owner's manual. Move the Color/B-W lever to
the correct setting. Turn the power OFF and insert the Alien game cartridge.

(Screen shot of the ALIEN maze setup: Alien, Alien Egg, Human, Pulsar and

Play Level-demo mode only)

TO BEGIN: Turn the power ON. Use the Game Select lever and Difficulty
Switches to choose a play level. Press the Game Reset lever and get ready
to run for your life

THE OBJECTIVE: Your job is to run through the hallways of your space ship
and crush all the Alien Eggs which have been placed there. You must also
avoid or destroy the adult Aliens and snatch up as many prizes as possible.

THE CONTROLS: Tilt the joystick forward, backward, left and right to
maneuver through the hallways. To smash Eggs, simply run over them. You
may travel off one side of the maze and back into the other using the
"Hyperwarp Passage.” Each Human is equipped with a Flame Thrower that is
activated by the joystick button (see below).

SCREEN DISPLAY: The Play Level and Humans allowed per Play Level are
displayed in the bottom left corner of the screen when Alien is not in play.
During the game, the current score and Humans remaining are shown there.

LeveLs or PLAY/DIFFICULTY swchyas/aowus ROUNDS: Each game of Alien lasts
il you of ou can clear all of the Eggs out of a
playlng sczeen, you qet the chance to earn extra points in a "Bonus Round"
and then are returned to a new and more difficult playing screen. ALl

points and Humans remaining are carried over to the new screens.

Bonus Rounds: The object of the Bonus Round is to travel STRAIGHT UP to the
top of the screen and grab the prize shown there. You have only eigh

seconds to do so. You do not lose a human if you fail, but you earn the

point value of the prize if you succeed

Left Difficulty Switch A: Aliens travel in random order about the screen.

Left Difficulty Switch B: Aliend travel in fixed patterns about the screen.

Right Difficult Switch B: Capturing a Pulsar has standard effect on the Aliens.

Right Difficulty Switch A: Capturing a Pulsar has no effect on the Aliens.

(Screen shot of ALIEN maze: Flame Thrower, Prize, Hyperwarp Passages, Humans
Remaining and Current Score:

LEVEL 1 - NORMAL GAME PLAY: You begin with three Humans and receive a bonus
Human after successfully clearing the second screen. Prizes appear in chart

order.

LEVEL 2 - ADVANCED GAME PLAY: You begin with two Humans and receive no bonus
Humans. Prizes appear in chart order.

LEVEL 3 - FOR EXPERTS ONLY: You begin with three Humans and receive no bonus
Human after clearing the first screen. All Prizes in Level 3 are Saturns.

LEVEL 4 - EASY PRACTICE GAME: You begin with six Humans and receive 1 bonus
Human after clearing the first sceen. All Prizes in Level 4 are also Saturns.

OBJECTS/SCORING: Each time an Alien catches you, one Human is lost. You
score points for smashing Eggs and frying Aliens with the aid of your Flame
Thrower or Pulsar. In addition, you can gain points for picking up Prizes.
Be sure to record your high scores on the back of this booklet!

(Screen shot of the bonus round with the human at the bottom of the screen,
the prize at the top of the screen and the horizontal moving Aliens in the
centre portion -- similar to the road portion of Frogger.)

FLAME THROWER - 1 PER HUMAN: A spurt of flam from this contraption cause
Aliens to turn away from you or become immobilized for a short period of
time. Use the Throwers carefully. Each has only four secons of flame and
the Thrower will not operate in the extreme left or right areas of the
screen. You can also use the Flame Thrower to run over a Pulsar without
picking it up, allowing you to save the Pulsar to use at a later time

PULSARS - 3 PER MAZE: Capturing a Pulsar causes the Aliens to weaken and
turn blue. Then, for a short period of time, you can destroy them by
running over and touching them. The instant the Aliens return to their
original colr, however, they once again become deadly.

PRIZES - 2 PER MAZE: Prizes appear in all levels of play and in the Bonus
Rounds.

POINT CHART:

OBJECT POINTS PRIZES POINTS
Eggs 10 Rocket. 500

Pulsar 100 Saturn 1,000

1st Alien 500 Star Ship 2,000
2nd Alien 1,000 1lst Surprise 2,000-3,000
3rd Alien 2,000 2nd Surprise 3,000

Completed Screen 1 3rd Surprise 5,000

HINTS FROM DALLAS NORTH...
A good playing strategy is to crush all of the Eggs in one area at a time,
keeping within easy readh of a Pulsar. The best way to destroy Aliens is to
sit near a Pulsar until the Aliens are almost upon you. Then grab that
Pulsar and go get 'em !

Use the Hyperwarp Passage to ditch Aliens. Many times they won't follow you in.

If you're having trouble with the Bonus Rounds, try going between the Alien
pairs rather than around them.

SUPER SMASHERS (a place to enter your high scores)
Name Level Score




Interactive Reasoning Challenges

Learning from text-based games

1

u facing the direction marked by x. Choose the number corresponding to the direction you want to move in.
Colour key:
; A 5 ence, pole, traffic light, traffic sign, ,» terrain, ’

’
’ ’

JOINT TEXT

Turn and move the same direction as traffic. When you get to an intersection, turn left. After you turn the corner building on t
he right has a green awning. Go straight one block. Turn left again then immediately stop. The road ahead of you should curve. L
ook to the left corner and you will see a trashcan between a stop light post and a tree.

Reward: @ Cumulative reward: 0 Steps: @ Done: False Your historical scores
Type to choose action. Type ? to see action list.

[Zhong et al., SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark. NeurlPS 2021]

Open
challenges




Open

Interactive Reasoning Challenges challenges

Learning from lots of offline data

SR
]/}

= .L ;- i
[Fan et al., MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge. arXiv 2022]



Open

Interactive Reasoning Challenges challenges

Hard to specify reward, but only final goal

[Habitat Rearrangement Challenge 2022]



Summary: RL Methods

Epsilon greedy + exploration
Experience replay
Decorrelate samples

Fixed targets » Value Based

Value iteration
Policy iteration
(Deep) Q-learning

Learned Value Function

Implicit policy (e.g. e-greedy)

» Policy Based

Value Function Policy
Policy gradients - No Value Function

. ] . ) - Learned Policy
Variance reduction with a baseline

Value-Based Actor Policy-Based
Critic

» Actor-Critic
Actor (policy)

Functi
Critic (Q-values) Learned Value Function

- Learned Policy

[Slides from Fragkiadaki, 10-703 CMU]



