
Retrieval Augmented Generation

Ngo Van Linh

Hanoi University of Science and Technology

Outline

1. RAG Overview
2. Retrieval

- Overview: Keyword search, Bi/Cross-Encoder
- BGE
- LLM for Retrieval
- LLM2VEC
- NV-Embed

3. RAG advanced techniques
- Query Construction
- Query Translation
- Routing
- Indexing
- Retrieval
- Generation
- Why still need RAG in the era of Long Context LLMs?

1. RAG Overview: Why RAG?

● LLMs excel at understanding and processing human language
● However,

○ Knowledge cutoff (GPT-3.5 is Sept 2021)
○ Hallucination
○ Bias
○ Fine-tune to specific data is expensive due to the model size
○ Limited context length

● LLMs are good at In-Context Learning
● Retrieval-augmented generation (RAG) provides LLMs with

External Knowledge / Relevant Information

⇒ Improve quality

RAG Overview

RAG advanced techniques

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_1_to_4.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

2. Retrieval

2.1. Tổng quan: Keyword search, Bi/Cross-Encoder

2.2. BGE-m3

2.3. LLM for Retrieval

2.4. LLM2VEC

2.5. NV-Embed

2.1. Tổng quan: Keyword search, Bi/Cross-Encoder

• Một số cách tiếp cận cơ bản:
oKeyword search, feature search
oCross-encoder
oBi-encoder

7

BM25 (Best Matching)

8

• Ước lượng mức độ liên quan của các tài liệu đối với một truy vấn, sử
dụng biểu diễn tài liệu tương tự biểu diễn TF-IDF

• Ưu điểm
oĐơn giản, dễ hiểu, hiệu quả
oSử dụng chuẩn hóa độ dài tài liệu
oTốc độ nhanh

• Hạn chế
oKhông xem xét ngữ nghĩa và ngữ cảnh
oGiả định độc lập thống kê giữa các từ truy vấn

BM25 (Best Matching)

9

Bi-encoder

10

Kiến trúc chung của bi-encoder

• Ưu điểm
oTruy xuất dựa trên độ tương đồng ngữ nghĩa
oTốc độ truy xuất nhanh
oCác véc-tơ nhúng có thể được tính trước

Condenser

11

Kiến trúc Condenser

L. Gao and J. Callan, “Condenser: A pre-training architecture for dense retrieval,” EMNLP 2021.

Contrastive learning

12

• Được ứng dụng thành công và rộng rãi trong truy xuất thông tin
• Hàm mất mát tương phản
• Các kỹ thuật chính
oKích thước batch lớn
oKhai phá mẫu âm khó

Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "Simcse: Simple
contrastive learning of sentence embeddings." EMNLP (2021).

coCondenser

13

• coCondenser được tiền huấn luyện với hàm mất mát tương phản
không giám sát để warmup không gian nhúng
oTrích rút hai đoạn văn từ mỗi tài liệu [Izacard et.al 2021]
oHọc tương phản trên các đoạn văn này

Izacard, Gautier, et al. "Unsupervised dense information retrieval with contrastive learning." arXiv
preprint arXiv:2112.09118 (2021).

RetroMAE

• Masked Auto-Encoder (MAE): A moderate ratio for encoder: 15-30%, and an aggressive ratio
for decoder: 50-70%.

Xiao, S., Liu, Z., Shao, Y., & Cao, Z. (2022, December). RetroMAE: Pre-Training Retrieval-oriented Language

Models Via Masked Auto-Encoder. In Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing (pp. 538-548).

Cross-encoder

15

Kiến trúc chung của cross-encoder

• So với kiến trúc bi-encoder
oThường độ chính xác cao hơn
oTốc độ chậm hơn

Sử dụng kết hợp với bi-encoder

16

2.2. BGE_M3

• Three challenges:
• Most of the embedding models are tailored only for English, leaving few viable options for the

other languages.
• The existing embedding models are usually trained for one single retrieval functionality.

However, typical IR systems call for the compound workflow of multiple retrieval methods.
• Most of the embedding models can only support short inputs

• Contribution
• Multi-linguality
• Multi-functionality: Dense retrieval, lexical (sparse) retrieval, and multi-vector retrieval
• Multi-granularity: Input granularities, spanning from short inputs like sentences and passages,

to long documents of up to 8,192 input tokens.
• Propose a novel training framework of self-knowledge distillation and efficient batching

strategy

Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D., & Liu, Z. (2024). Bge m3-embedding: Multi-lingual,

multi-functionality, multi-granularity text embeddings through self-knowledge distillation. arXiv

preprint arXiv:2402.03216.

17

Architecture

• Adopt a further pre-trained XLM-RoBERTa12 as the foundational model
• Extend the max position to 8192

18

Datasets: Unsupervised and Supervised datasets

- Generate synthetic data to mitigate the
shortage of long document retrieval tasks and
introduce extra multi-lingual fine-tuning data
(denoted as MultiLongDoc)

- Sample lengthy articles from Wikipedia, Wudao
and mC4 datasets and randomly choose
paragraphs from them.

- Use GPT3.5 to generate questions based on
these paragraphs.

- The generated question and the sampled article
constitute a new text pair to the fine-tuning
data

19

Training process:

20

Phase 1: Pre-training

• The text encoder is pre-trained with
the massive unsupervised data,
where only the dense retrieval is
trained in the basic form of
contrastive learning

21

Phase 2: Finetuning

22

Phase 2: Finetuning

23

Phase 2: Finetuning

- The final retrieval result is re-ranked
based on the integrated relevance
score:

24

Loss function

• The weighted sum of different prediction scores:

• Contrastive loss for each component:

where , p∗ and P′ stand for the positive and negative samples to the query q; s(·)
is any of the functions within 𝑠𝑑𝑒𝑛𝑠𝑒(.), 𝑠𝑙𝑒𝑥(.), 𝑠𝑚𝑢𝑙(.), 𝑠𝑖𝑛𝑡𝑒𝑟(.)

• The weighted sum of losses:

• Hyperparameter setting:

25

Self-knowledge distillation

• Employ the integration score 𝑠𝑖𝑛𝑡𝑒𝑟 as the teacher, each functional score is a
student:

where p(·) is the softmax activation; 𝑠∗ is any of the members within
𝑠𝑑𝑒𝑛𝑠𝑒(.), 𝑠𝑙𝑒𝑥(.), 𝑠𝑚𝑢𝑙(.)

• Integrate and normalize the modified loss function

• Final loss: The linear combination of contrastive loss and self-knowledge
distillation:

26

Efficient Batching

27

Experimental Results

28

Experimental Results

29

2.3. LLM for Retrieval: Motivations

• Existing multi-stage approaches suffer from
several drawbacks
• They entail a complex multi-stage training pipeline

that demands substantial engineering efforts to
curate large amounts of relevance pairs

• They rely on manually collected datasets that are
often constrained by the diversity of tasks and the
coverage of languages.

• Most existing methods employ BERT-style encoders
as the backbone, neglecting the recent advances of
training better LLMs and related techniques such as
context length extension

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2024). Improving

text embeddings with large language models. ACL 2024.

30

LLM for Retrieval: Contributions

• Use LLMs to generate synthetic data for a diverse range of text embedding tasks
in 93 languages, covering hundreds of thousands of embedding tasks
• Use a two-step prompting strategy that first prompts the LLMs to brainstorm

a pool of candidate tasks, and then prompts the LLMs to generate data
conditioned on a given task from the pool.

• Fine-tune powerful open-source LLMs rather than small BERT-style models

31

Generating synthetic data with GPT4

32

Finetune Mistral7B

• Append an [EOS] token to the end of the query and document, and
then feed them into the LLM to obtain the query and document
embeddings.

• Contrastive loss

33

Experimental Results: Data

• Generate 500k examples with 150k unique instructions using Azure OpenAI
Service 2, among which 25% are generated by GPT-35-Turbo and others are
generated by GPT-4. The total token consumption is about 180M.

34

Model finetuning and Evaluation

35

Results

36

Results

37

2.4. LLM2VEC

• Contributions:
• A simple approach to convert large

language models into text embedding
models

• Enable bidirectional attention in LLMs
• Propose next token prediction objective

to help model learn bidirectional
attention

BehnamGhader, P., Adlakha, V., Mosbach, M., Bahdanau, D.,

Chapados, N., & Reddy, S. (2024). Llm2vec: Large language

models are secretly powerful text encoders. arXiv preprint

arXiv:2404.05961.

38

LLM2VEC

NV-Embed

Contributions:
● Propose a new pooling

strategy
● Two-stage contrastive

instruction-tuning for
retrieval and non-retrieval
tasks

Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catanzaro,

B., & Ping, W. (2024). NV-Embed: Improved Techniques for

Training LLMs as Generalist Embedding Models. arXiv preprint

arXiv:2405.17428.

NV-Embed

● Final Representations
attend into a “learnable
dictionary” before mean
pooling
⇒ sparse dictionary
learning
⇒ improve performance
on retrieval tasks

NV-Embed

Two-stage tuning:
1. Train retrieval data with in-batch trick

2. Train both retrieval data and non-retrieval data without in-batch trick

⇒ In-batch trick is helpful for retrieval tasks but harmful for non-
retrieval such as clustering or classification

⇒ In the second stage, the negative samples are selected before
instead of exploiting in-batch samples

Experimental results

Leaderboard

• MTEB: Massive Text Embedding Benchmark

• Leaderboard: https://huggingface.co/spaces/mteb/leaderboard

Leaderboard: MTEB

Leaderboard: MTEB

3. RAG advanced techniques

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_1_to_4.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

Query Translation

● Distance-based retrieval can be sensitive to query wording and
imperfect embedding

● Current Approach: Manual prompt tuning ⇒ Tedious

⇒ Automates prompt tuning with LLMs

● Approaches:
○ Multi-query
○ RAG-Fusion
○ Step-back
○ HyDE
○ …

Multi-Query

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

Generate different questions from the original one to retrieve more diverse documents

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

Multi-Query

Concatenate retrieved documents into a context, and ask the LLM with the original question

RAG-Fusion

Different from Multi-query, RAG-Fusion add a Re-ranker to put the most relevant documents
into the beginning of the context ⇒ Mitigating “Lost-in-the-middle” problem.

Re-ranker

Recursive Query Decomposition

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

Individual Query Decomposition

Ask sub-questions separately and concatenate all question and answer pairs

into context then ask LLM to synthesize the answer for the original question.

Step-Back

https://arxiv.org/pdf/2310.06117.pdf

Prompt = """You are an expert at world knowledge. Your task is to step back and paraphrase a question to

a more generic step-back question, which is easier to answer. Here are a few examples:""",

https://arxiv.org/pdf/2310.06117.pdf

HyDE

Generates hypothetical answers to queries, embeds them for better
retrieval.

https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb

https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb

Routing

Routing

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

Routing

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

Query Construction

● Most data has some structure: SQL, Graph
● Previous use embedding to retrieve unstructured data

⇒ How’s about structured data?

● Query Construction converts natural language into a specific query
syntax

Query Construction

Query Construction

Indexing

● Documents will be processed, segmented, transformed into
Embeddings.

● The quality of index construction determines whether the correct
context can be obtained in the retrieval phase.

Indexing

● Balancing Context and Efficiency:
○ Fixed-Size Chunking:

■ Common method (e.g., 100, 256, 512 tokens).
■ Larger chunks: More context, but more noise

(longer processing, higher cost).
■ Smaller chunks: Less noise, but less context.

○ Alternative Approaches:
■ Recursive Splits & Sliding Windows: Layered

retrieval with better context, but complex.
● Challenge: Finding the optimal balance between semantic

completeness and context length.

Multi-Representation Indexing

● Challenge: Balancing meaning (small chunks) and
context (large documents) in retrieval.

● Parent Document Retriever:
○ Splits documents into small chunks for accurate

embeddings.
○ Stores parent document IDs for each chunk.
○ Retrieves relevant chunks during search.
○ Returns the complete parent documents for

retrieved chunks (ensures context).

Specialized Embeddings

● Improve embedding leads to better retrieval
● Domain-specific Finetuning embedding models
● Advanced embeddings models

ColBERT: https://github.com/stanford-futuredata/ColBERT bge-m3 embedding: https://huggingface.co/BAAI/bge-m3

https://github.com/stanford-futuredata/ColBERT
https://huggingface.co/BAAI/bge-m3

Hierarchical Indexing

Retrieval

● RAG relies on external knowledge to
enhance LLMs,

⇒ The type of retrieval source and the
granularity of retrieval units both affect the
final generation results
● So far, we mentioned unstructured/

structured data source, LLM-generated
content

● In text, retrieval granularity ranges from
fine to coarse, including Token, Phrase,
Sentence, Proposition, Chunks, Document

RAG-Fusion

Corrective-RAG

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb

Grade node’s prompt to check whether the given document is relevant
or not

If does not find any relevant docs based on the input question, ask LLM
to re-write the question then use this question for web search

Generation

● After retrieval, it is not good to
directly input all the retrieved docs to
LLM

● Problem:
○ Redundant infor interfere with final

generation
○ “Lost in the middle” problem with long

context
● Solutions

○ Reranking: ColBert, Reranker models,
etc.,

○ Context compression: uses small LM to
remove low-informatic words

Self-RAG

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_self_rag.ipynb

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_self_rag.ipynb

Do We Still Need RAG?

● Context length is improved significantly
● Should we feed all the data into the context, then query?

⇒ Possibly No

Long context:

● More API’s fee / Memory

● Needle in a Haystack problem

Needle In A Haystack: test reasoning & retrieval in long context LLMs

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Retrieval is not guaranteed, reasoning harder than retrieval

https://youtu.be/UlmyyYQGhzc

https://blog.langchain.dev/multi-needle-in-a-haystack/

https://youtu.be/UlmyyYQGhzc
https://blog.langchain.dev/multi-needle-in-a-haystack/

LLMs perform worse with long context benchmarks

https://arxiv.org/abs/2404.02060

https://arxiv.org/abs/2404.02060

Thank you for your attention!

	Slide 1: Retrieval Augmented Generation
	Slide 2: Outline
	Slide 3: 1. RAG Overview: Why RAG?
	Slide 4: RAG Overview
	Slide 5: RAG advanced techniques
	Slide 6: 2. Retrieval
	Slide 7: 2.1. Tổng quan: Keyword search, Bi/Cross-Encoder
	Slide 8: BM25 (Best Matching)
	Slide 9: BM25 (Best Matching)
	Slide 10: Bi-encoder
	Slide 11: Condenser
	Slide 12: Contrastive learning
	Slide 13: coCondenser
	Slide 14: RetroMAE
	Slide 15: Cross-encoder
	Slide 16: 2.2. BGE_M3
	Slide 17: Architecture
	Slide 18: Datasets: Unsupervised and Supervised datasets
	Slide 19: Training process:
	Slide 20: Phase 1: Pre-training
	Slide 21: Phase 2: Finetuning
	Slide 22: Phase 2: Finetuning
	Slide 23: Phase 2: Finetuning
	Slide 24: Loss function
	Slide 25: Self-knowledge distillation
	Slide 26: Efficient Batching
	Slide 27: Experimental Results
	Slide 28: Experimental Results
	Slide 29: 2.3. LLM for Retrieval: Motivations
	Slide 30: LLM for Retrieval: Contributions
	Slide 31: Generating synthetic data with GPT4
	Slide 32: Finetune Mistral7B
	Slide 33: Experimental Results: Data
	Slide 34: Model finetuning and Evaluation
	Slide 35: Results
	Slide 36: Results
	Slide 37: 2.4. LLM2VEC
	Slide 38: LLM2VEC
	Slide 39: NV-Embed
	Slide 40: NV-Embed
	Slide 41: NV-Embed
	Slide 42: Experimental results
	Slide 43: Leaderboard
	Slide 44: Leaderboard: MTEB
	Slide 45: Leaderboard: MTEB
	Slide 46: 3. RAG advanced techniques
	Slide 47: Query Translation
	Slide 48: Multi-Query
	Slide 49: Multi-Query
	Slide 50: RAG-Fusion
	Slide 51: Recursive Query Decomposition
	Slide 52: Individual Query Decomposition
	Slide 53: Step-Back
	Slide 54: HyDE
	Slide 55: Routing
	Slide 56: Routing
	Slide 57: Routing
	Slide 58
	Slide 59: Query Construction
	Slide 60: Query Construction
	Slide 61: Query Construction
	Slide 62
	Slide 63: Indexing
	Slide 64: Indexing
	Slide 65: Multi-Representation Indexing
	Slide 66: Specialized Embeddings
	Slide 67: Hierarchical Indexing
	Slide 68
	Slide 69: Retrieval
	Slide 70: RAG-Fusion
	Slide 71: Corrective-RAG
	Slide 72
	Slide 73
	Slide 74: Generation
	Slide 75: Self-RAG
	Slide 76: Do We Still Need RAG?
	Slide 77
	Slide 78
	Slide 79
	Slide 80

