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1. RAG Overview: Why RAG?

● LLMs excel at understanding and processing human language
● However,

○ Knowledge cutoff (GPT-3.5 is Sept 2021)
○ Hallucination 
○ Bias 
○ Fine-tune to specific data is expensive due to the model size
○ Limited context length 

● LLMs are good at In-Context Learning
● Retrieval-augmented generation (RAG) provides LLMs with 

External Knowledge / Relevant Information 

⇒ Improve quality 



RAG Overview



RAG advanced techniques

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_1_to_4.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb


2. Retrieval

2.1. Tổng quan: Keyword search, Bi/Cross-Encoder

2.2. BGE-m3

2.3. LLM for Retrieval

2.4. LLM2VEC

2.5. NV-Embed



2.1. Tổng quan: Keyword search, Bi/Cross-Encoder

• Một số cách tiếp cận cơ bản:
oKeyword search, feature search
oCross-encoder
oBi-encoder
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BM25 (Best Matching)
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• Ước lượng mức độ liên quan của các tài liệu đối với một truy vấn, sử 
dụng biểu diễn tài liệu tương tự biểu diễn TF-IDF 

• Ưu điểm
oĐơn giản, dễ hiểu, hiệu quả
oSử dụng chuẩn hóa độ dài tài liệu
oTốc độ nhanh

• Hạn chế
oKhông xem xét ngữ nghĩa và ngữ cảnh
oGiả định độc lập thống kê giữa các từ truy vấn



BM25 (Best Matching)
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Bi-encoder
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Kiến trúc chung của bi-encoder

• Ưu điểm
oTruy xuất dựa trên độ tương đồng ngữ nghĩa
oTốc độ truy xuất nhanh
oCác véc-tơ nhúng có thể được tính trước



Condenser
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Kiến trúc Condenser

L. Gao and J. Callan, “Condenser: A pre-training architecture for dense retrieval,” EMNLP 2021. 



Contrastive learning
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• Được ứng dụng thành công và rộng rãi trong truy xuất thông tin
• Hàm mất mát tương phản
• Các kỹ thuật chính
oKích thước batch lớn
oKhai phá mẫu âm khó

Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "Simcse: Simple 
contrastive learning of sentence embeddings." EMNLP (2021).



coCondenser
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• coCondenser được tiền huấn luyện với hàm mất mát tương phản 
không giám sát để warmup không gian nhúng
oTrích rút hai đoạn văn từ mỗi tài liệu [Izacard et.al 2021] 
oHọc tương phản trên các đoạn văn này

Izacard, Gautier, et al. "Unsupervised dense information retrieval with contrastive learning." arXiv 
preprint arXiv:2112.09118 (2021).



RetroMAE

• Masked Auto-Encoder (MAE):  A moderate ratio for encoder: 15-30%, and an aggressive ratio 
for decoder: 50-70%. 

Xiao, S., Liu, Z., Shao, Y., & Cao, Z. (2022, December). RetroMAE: Pre-Training Retrieval-oriented Language 

Models Via Masked Auto-Encoder. In Proceedings of the 2022 Conference on Empirical Methods in Natural 

Language Processing (pp. 538-548).



Cross-encoder
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Kiến trúc chung của cross-encoder

• So với kiến trúc bi-encoder
oThường độ chính xác cao hơn 
oTốc độ chậm hơn

Sử dụng kết hợp với bi-encoder
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2.2. BGE_M3

• Three challenges:
• Most of the embedding models are tailored only for English, leaving few viable options for the 

other languages. 
• The existing embedding models are usually trained for one single retrieval functionality. 

However, typical IR systems call for the compound workflow of multiple retrieval methods. 
• Most of the embedding models can only support short inputs

• Contribution
• Multi-linguality
• Multi-functionality: Dense retrieval, lexical (sparse) retrieval, and multi-vector retrieval
• Multi-granularity: Input granularities, spanning from short inputs like sentences and passages, 

to long documents of up to 8,192 input tokens.
• Propose a novel training framework of self-knowledge distillation and efficient batching 

strategy

Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D., & Liu, Z. (2024). Bge m3-embedding: Multi-lingual, 

multi-functionality, multi-granularity text embeddings through self-knowledge distillation. arXiv 

preprint arXiv:2402.03216.
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Architecture

• Adopt a further pre-trained XLM-RoBERTa12 as the foundational model 
• Extend the max position to 8192 
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Datasets: Unsupervised and Supervised datasets

- Generate synthetic data to mitigate the 
shortage of long document retrieval tasks and 
introduce extra multi-lingual fine-tuning data 
(denoted as MultiLongDoc)

- Sample lengthy articles from Wikipedia, Wudao 
and mC4 datasets and randomly choose 
paragraphs from them. 

- Use GPT3.5 to generate questions based on 
these paragraphs. 

- The generated question and the sampled article 
constitute a new text pair to the fine-tuning 
data
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Training process: 
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Phase 1: Pre-training 

• The text encoder is pre-trained with 
the massive unsupervised data, 
where only the dense retrieval is 
trained in the basic form of 
contrastive learning 
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Phase 2: Finetuning
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Phase 2: Finetuning
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Phase 2: Finetuning

- The final retrieval result is re-ranked 
based on the integrated relevance 
score: 
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Loss function

• The weighted sum of different prediction scores:

• Contrastive loss for each component:

where , p∗ and P′ stand for the positive and negative samples to the query q; s(·) 
is any of the functions within 𝑠𝑑𝑒𝑛𝑠𝑒(.), 𝑠𝑙𝑒𝑥(.), 𝑠𝑚𝑢𝑙(.), 𝑠𝑖𝑛𝑡𝑒𝑟(.)

• The weighted sum of losses:

• Hyperparameter setting:
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Self-knowledge distillation

• Employ the integration score 𝑠𝑖𝑛𝑡𝑒𝑟 as the teacher, each functional score is a 
student:

where p(·) is the softmax activation; 𝑠∗ is any of the members within 
𝑠𝑑𝑒𝑛𝑠𝑒(.), 𝑠𝑙𝑒𝑥(.), 𝑠𝑚𝑢𝑙(.)

• Integrate and normalize the modified loss function

• Final loss: The linear combination of contrastive loss and self-knowledge 
distillation: 
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Efficient Batching
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Experimental Results
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Experimental Results
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2.3. LLM for Retrieval: Motivations

• Existing multi-stage approaches suffer from 
several drawbacks 
• They entail a complex multi-stage training pipeline 

that demands substantial engineering efforts to 
curate large amounts of relevance pairs 

• They rely on manually collected datasets that are 
often constrained by the diversity of tasks and the 
coverage of languages. 

• Most existing methods employ BERT-style encoders 
as the backbone, neglecting the recent advances of 
training better LLMs and related techniques such as 
context length extension 

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2024). Improving 

text embeddings with large language models. ACL 2024.
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LLM for Retrieval: Contributions

• Use LLMs to generate synthetic data for a diverse range of text embedding tasks 
in 93 languages, covering hundreds of thousands of embedding tasks 
• Use a two-step prompting strategy that first prompts the LLMs to brainstorm 

a pool of candidate tasks, and then prompts the LLMs to generate data 
conditioned on a given task from the pool. 

• Fine-tune powerful open-source LLMs rather than small BERT-style models
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Generating synthetic data with GPT4
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Finetune Mistral7B

• Append an [EOS] token to the end of the query and document, and 
then feed them into the LLM to obtain the query and document 
embeddings. 

• Contrastive loss
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Experimental Results: Data

• Generate 500k examples with 150k unique instructions using Azure OpenAI 
Service 2, among which 25% are generated by GPT-35-Turbo and others are 
generated by GPT-4. The total token consumption is about 180M. 
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Model finetuning and Evaluation
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Results
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Results
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2.4. LLM2VEC

• Contributions:
• A simple approach to convert large 

language models into text embedding 
models

• Enable bidirectional attention in LLMs
• Propose next token prediction objective 

to help model learn bidirectional 
attention

BehnamGhader, P., Adlakha, V., Mosbach, M., Bahdanau, D., 

Chapados, N., & Reddy, S. (2024). Llm2vec: Large language 

models are secretly powerful text encoders. arXiv preprint 

arXiv:2404.05961.



38

LLM2VEC



NV-Embed

Contributions:
● Propose a new pooling 

strategy
● Two-stage contrastive 

instruction-tuning for 
retrieval and non-retrieval 
tasks

Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catanzaro, 

B., & Ping, W. (2024). NV-Embed: Improved Techniques for 

Training LLMs as Generalist Embedding Models. arXiv preprint 

arXiv:2405.17428.



NV-Embed

● Final Representations 
attend into a “learnable 
dictionary” before mean 
pooling
⇒ sparse dictionary 
learning
⇒ improve performance 
on retrieval tasks



NV-Embed

Two-stage tuning:
1. Train retrieval data with in-batch trick

2. Train both retrieval data and non-retrieval data without in-batch trick

⇒ In-batch trick is helpful for retrieval tasks but harmful for non-
retrieval such as clustering or classification

⇒ In the second stage, the negative samples are selected before 
instead of exploiting in-batch samples



Experimental results



Leaderboard

• MTEB: Massive Text Embedding Benchmark

• Leaderboard: https://huggingface.co/spaces/mteb/leaderboard



Leaderboard: MTEB



Leaderboard: MTEB



3. RAG advanced techniques

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_1_to_4.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb


Query Translation

● Distance-based retrieval can be sensitive to query wording and 
imperfect embedding

● Current Approach: Manual prompt tuning ⇒ Tedious

⇒ Automates prompt tuning with LLMs

● Approaches:
○ Multi-query
○ RAG-Fusion
○ Step-back 
○ HyDE
○ …



Multi-Query

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

Generate different questions from the original one to retrieve more diverse documents

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb


Multi-Query

Concatenate retrieved documents into a context, and ask the LLM with the original question



RAG-Fusion

Different from Multi-query, RAG-Fusion add a Re-ranker to put the most relevant documents 
into the beginning of the context ⇒ Mitigating “Lost-in-the-middle” problem.

Re-ranker



Recursive Query Decomposition

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb


Individual Query Decomposition

Ask sub-questions separately and concatenate all question and answer pairs 

into context then ask LLM to synthesize the answer for the original question.



Step-Back

https://arxiv.org/pdf/2310.06117.pdf

Prompt = """You are an expert at world knowledge. Your task is to step back and paraphrase a question to 

a more generic step-back question, which is easier to answer. Here are a few examples:""",

https://arxiv.org/pdf/2310.06117.pdf


HyDE

Generates hypothetical answers to queries, embeds them for better 
retrieval.

https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb

https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb


Routing



Routing

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb


Routing

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb




Query Construction

● Most data has some structure: SQL, Graph 
● Previous use embedding to retrieve unstructured data

⇒ How’s about structured data?

● Query Construction converts natural language into a specific query 
syntax



Query Construction



Query Construction





Indexing

● Documents will be processed, segmented, transformed into 
Embeddings.

● The quality of index construction determines whether the correct 
context can be obtained in the retrieval phase.



Indexing

● Balancing Context and Efficiency:
○ Fixed-Size Chunking:

■ Common method (e.g., 100, 256, 512 tokens).
■ Larger chunks: More context, but more noise 

(longer processing, higher cost).
■ Smaller chunks: Less noise, but less context.

○ Alternative Approaches:
■ Recursive Splits & Sliding Windows: Layered 

retrieval with better context, but complex.
● Challenge: Finding the optimal balance between semantic 

completeness and context length.



Multi-Representation Indexing

● Challenge: Balancing meaning (small chunks) and 
context (large documents) in retrieval.

● Parent Document Retriever:
○ Splits documents into small chunks for accurate 

embeddings.
○ Stores parent document IDs for each chunk.
○ Retrieves relevant chunks during search.
○ Returns the complete parent documents for 

retrieved chunks (ensures context).



Specialized Embeddings

● Improve embedding leads to better retrieval
● Domain-specific Finetuning embedding models
● Advanced embeddings models

ColBERT: https://github.com/stanford-futuredata/ColBERT bge-m3 embedding: https://huggingface.co/BAAI/bge-m3

https://github.com/stanford-futuredata/ColBERT
https://huggingface.co/BAAI/bge-m3


Hierarchical Indexing





Retrieval

● RAG relies on external knowledge to 
enhance LLMs, 

⇒ The type of retrieval source and the 
granularity of retrieval units both affect the 
final generation results
● So far, we mentioned unstructured/ 

structured data source, LLM-generated 
content

● In text, retrieval granularity ranges from 
fine to coarse, including Token, Phrase, 
Sentence, Proposition, Chunks, Document



RAG-Fusion



Corrective-RAG

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb


Grade node’s prompt to check whether the given document is relevant 
or not



If does not find any relevant docs based on the input question, ask LLM 
to re-write the question then use this question for web search



Generation

● After retrieval, it is not good to 
directly input all the retrieved docs to 
LLM

● Problem:
○ Redundant infor interfere with final 

generation
○ “Lost in the middle” problem with long 

context
● Solutions

○ Reranking: ColBert, Reranker models, 
etc.,

○ Context compression: uses small LM to 
remove low-informatic words



Self-RAG

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_self_rag.ipynb

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_self_rag.ipynb


Do We Still Need RAG?

● Context length is improved significantly
● Should we feed all the data into the context, then query?

⇒ Possibly No

Long context: 

● More API’s fee / Memory

● Needle in a Haystack problem



Needle In A Haystack: test reasoning & retrieval in long context LLMs

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

https://github.com/gkamradt/LLMTest_NeedleInAHaystack


Retrieval is not guaranteed, reasoning harder than retrieval 

https://youtu.be/UlmyyYQGhzc

https://blog.langchain.dev/multi-needle-in-a-haystack/

https://youtu.be/UlmyyYQGhzc
https://blog.langchain.dev/multi-needle-in-a-haystack/


LLMs perform worse with long context benchmarks

https://arxiv.org/abs/2404.02060

https://arxiv.org/abs/2404.02060


Thank you for your attention!
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