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Attention in Seq2Seq (1)

Input sequence X,
encoder fenc, decoder
fdec

fenc(X) produces
hidden states hE1 , ..., h

E
N

On time step t, have
decoder hidden state
hDt

Attention score:
ei = hDt

⊺
hEi

Attention distribution:
ati =

exp(ei)∑N
i exp(ei)
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Attention in Seq2Seq (2)
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Attention in Seq2Seq (3)

Sample output ŷt using both
hDt and cDt :

ŷt ∼ fdec(h
D
t , c

D
t , θ) (1)
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Self-Attention (1)
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Self-Attention (2)

Self-Attention’s goal is to create great representations, zi of the
input

zi is based on a weighted contribution of each token in the input
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Self-Attention (3)

Given the input sequence: x1, x2, ..., xn
Each word xi has 3 associated vectors: Query vector qi, Key vector
ki, Value vector vi:

qi = wqxi

ki = wkxi

vi = wvxi

For word xi, let’s calculate the scores s1i , ..., s
n
i which represent

how much attention to pay to each respective vi:

sji = qikj (2)

where j = 1, ..., n

Let’s divide sji by
√
d where d is the dimension of ki and softmax

it:

aji = softmax(
sji√
d
) (3)

Dang Tran Thai (VinBigdata) August 18, 2024 8 / 18



Self-Attention (3)

Compute zi as the following:

zi =

n∑
j=1

ajivj (4)

Self-Attention is powerful that allows to create context-aware
representations.
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Transformer Architecture (1)

The encoder maps an input sequence
of symbol representations (x1, ..., xn)
to a sequence of continuous
representations z = (z1, ..., zn)

Given z, the decoder then generates
an output sequence (y1, ..., ym) of
symbols one element at a time.

Encoder: a stack of 6 identical layers.
Each layer contains: multi-head
self-attention; position-wise fully
connected feed-forward network.

Decoder: a stack of 6 identical layers.
Each layer also contains sub-layers as
encoder with adding a multi-head
attention over the output of the
encoder stack.

Figure: The Transformer -
model architecture
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Transformer Architecture (2)

Attention

Scaled Dot-Product Attention

Attention(Q,K, V ) = softmax(
QK⊺

√
dk

)V (5)

where dk is the dimension of query and key vectors

Multi-Head Attention: Linearly project queries, keys, and values h
times:

MultiHead(Q,K, V ) = Concat(head1, .., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V W V
i )

(6)

Positional Encoding

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(7)
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Model Architectures

Language Model (e.g., GPT): use Decoder-only architecture

BERT-style models: use Encoder-only architecture

T5, BART: use Encoder-Decoder architecture

The major distinguishing factor for different architectures is the
”mask“ used by different attention mechanisms in the model

Dang Tran Thai (VinBigdata) August 18, 2024 12 / 18



Attention Masks (1)
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Attention masks (2)

”Fully-visible“ attention masking
▶ Allowing a self-attention mechanism to attend to any entry of the

input when producing each entry of its output
▶ BERT also uses a fully-visible masking pattern and appends a

special ”classification“ token to the input

”Causal“ attention masking
▶ used in the self-attention operations in the Transformer’s decoder
▶ When producing the ith entry of the output sequence, causal

masking prevents the model from attending to the jth entry of the
input sequence for j > i

▶ During the training the model can’t ”see into the future“ as it
produces its output

Prefix LM
▶ Use fully-visible masking during the prefix portion of the sequence
▶ This architecture is similar to an encoder-decoder model with

parameters shared across the encoder and decoder
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Training Objectives

Causal Language Modeling

The model is trained to predict the next token in the sequence
given the previous tokens.

The input tokens are fed into the model, and the model predicts
the probability distribution of the next token

The loss is calculated based on the model’s predictions and the
actual target tokens

Masked Language Modeling (a.k.a., denoising)

The model is trained to predict masked tokens within the input
sequence. During the preprocessing, a certain percentage of tokens
are randomly masked, and the model is trained to predict the
original tokens at those masked positions.

The loss is calculated based on the model’s predictions and the
actual target tokens (the original tokens masked)

Dang Tran Thai (VinBigdata) August 18, 2024 15 / 18



Pros & Cons of Training Objectives

Causal Language Modeling

Pros: models are designed for auto-regressive text generation that
helps to generate coherent and contextually documents or
responses in chatbot

Cons: Do not explicitly capture bidirectional context and the only
generate tokens based on previous ones

Masked Language Modeling

Pros: Model can potentially capture bidirectional context that
help the model understand the context more effectively

Cons: Cannot generate text auto-regressively
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Unifying Language Learning Paradigms (UL2)
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What Language Model Architecture and Pre-training
Objective work best for zero-shot generalization

Finding 1 1: The causal decoder-only models pretrained with a
full language modeling objective achieve best zero-shot
generalization when evaluated immediately after unsupervised
pre-training

Finding 2: Encoder-decoder models trained with masked
language modeling achieve the best zero-shot performance after
multitask finetuning.

Finding 3: Decoder-only models can be efficiently adapted from
one architecture/objective prior to the other. Specifically, to
obtain both a generative and a multitask model with the smallest
total compute budget possible, they recommend starting with a
causal decoder-only model, pre-training it with a full language
modeling objective, then using non-causal masked language
modeling adaptation before taking it through multitask finetuning.

1https://arxiv.org/pdf/2204.05832
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