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Attention in Seq2Seq (1)
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Attention in Seq2Seq (2)
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Attention in Seq2Seq (3)
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Self-Attention (1)
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Self-Attention (2)
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e Self-Attention’s goal is to create great representations, z; of the
input

@ z; is based on a weighted contribution of each token in the input
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Self-Attention (3)

o Given the input sequence: 1, zo, ..., Ty
e Each word z; has 3 associated vectors: Query vector q;, Key vector
k;, Value vector v;:

qi = WqX;
ki = wiw;
Vi = WyXy
e For word z;, let’s calculate the scores sil, ..., 8;* which represent
how much attention to pay to each respective v;:
s] = qik; (2)

where j=1,...,n
o Let’s divide sg by V/d where d is the dimension of k; and softmax
it:

CL]

) (3)
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Self-Attention (3)

e Compute z; as the following:

n
si= aly (4)
j=1

Self-Attention is powerful that allows to create context-aware
representations.
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Transformer Architecture (1)

The encoder maps an input sequence
of symbol representations (z1, ..., Zp)
to a sequence of continuous
representations z = (21, ..., zn)

Given z, the decoder then generates
an output sequence (Y1, ..., Ym) of
symbols one element at a time.

Encoder: a stack of 6 identical layers.
Each layer contains: multi-head
self-attention; position-wise fully
connected feed-forward network.

Decoder: a stack of 6 identical layers.
Each layer also contains sub-layers as
encoder with adding a multi-head
attention over the output of the
encoder stack.
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Transformer Architecture (2)

Attention
o Scaled Dot-Product Attention

. QKT
Attention(Q, K, V) = softmax(——)V (5)
Vi
where d}, is the dimension of query and key vectors

e Multi-Head Attention: Linearly project queries, keys, and values h
times:

MultiHead(Q, K, V) = Concat(heads, .., head;,)W©

6
head; = Attention(QWiQ, K WZK , VWiV) (6)

Positional Encoding

PEpos2i) = 3in(p08/100002i/dm0del)
PE(pos 2i+1) = cos(pos /100002"/ dmoder)
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Model Architectures

Language Model (e.g., GPT): use Decoder-only architecture

BERT-style models: use Encoder-only architecture
T5, BART: use Encoder-Decoder architecture

@ The major distinguishing factor for different architectures is the
"mask“ used by different attention mechanisms in the model
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Attention Masks (1)

Fully-visible Causal Causal with prefix

Figure 3: Matrices representing different attention mask patterns. The input and output
of the self-attention mechanism are denoted z and y respectively. A dark cell
at row ¢ and column j indicates that the self-attention mechanism is allowed to
attend to input element j at output timestep 7. A light cell indicates that the
self-attention mechanism is not allowed to attend to the corresponding i and j
combination. Left: A fully-visible mask allows the self-attention mechanism to
attend to the full input at every output timestep. Middle: A causal mask prevents
the ith output element from depending on any input elements from “the future”.
Right: Causal masking with a prefix allows the self-attention mechanism to use
fully-visible masking on a portion of the input sequence.

Dang Tran Thai (VinBigdata) August 18, 2024 13 /18



Attention masks (2)

o "Fully-visible* attention masking
» Allowing a self-attention mechanism to attend to any entry of the
input when producing each entry of its output
» BERT also uses a fully-visible masking pattern and appends a
special ”classification“ token to the input

e ”"Causal“ attention masking
» used in the self-attention operations in the Transformer’s decoder
» When producing the i*" entry of the output sequence, causal
masking prevents the model from attending to the j** entry of the
input sequence for j > i
» During the training the model can’t ”see into the future“ as it
produces its output

@ Prefix LM
» Use fully-visible masking during the prefix portion of the sequence
» This architecture is similar to an encoder-decoder model with
parameters shared across the encoder and decoder
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Training Objectives

Causal Language Modeling

@ The model is trained to predict the next token in the sequence
given the previous tokens.

@ The input tokens are fed into the model, and the model predicts
the probability distribution of the next token
@ The loss is calculated based on the model’s predictions and the
actual target tokens
Masked Language Modeling (a.k.a., denoising)

@ The model is trained to predict masked tokens within the input
sequence. During the preprocessing, a certain percentage of tokens
are randomly masked, and the model is trained to predict the
original tokens at those masked positions.

@ The loss is calculated based on the model’s predictions and the
actual target tokens (the original tokens masked)
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Pros & Cons of Training Objectives

Causal Language Modeling

@ Pros: models are designed for auto-regressive text generation that
helps to generate coherent and contextually documents or
responses in chatbot

e Cons: Do not explicitly capture bidirectional context and the only
generate tokens based on previous ones

Masked Language Modeling

@ Pros: Model can potentially capture bidirectional context that
help the model understand the context more effectively

e Cons: Cannot generate text auto-regressively
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Unifying Language Learning Paradigms (UL2)
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What Language Model Architecture and Pre-training
Objective work best for zero-shot generalization

o Finding 1 !: The causal decoder-only models pretrained with a
full language modeling objective achieve best zero-shot
generalization when evaluated immediately after unsupervised
pre-training

e Finding 2: Encoder-decoder models trained with masked
language modeling achieve the best zero-shot performance after
multitask finetuning.

e Finding 3: Decoder-only models can be efficiently adapted from
one architecture/objective prior to the other. Specifically, to
obtain both a generative and a multitask model with the smallest
total compute budget possible, they recommend starting with a
causal decoder-only model, pre-training it with a full language
modeling objective, then using non-causal masked language
modeling adaptation before taking it through multitask finetuning.

"https://arxiv.org/pdf/2204.05832
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