

Introduction to Deep Generative Models (Mô hình tạo sinh sâu)

Khoat Than

School of Information and Communication Technology Hanoi University of Science and Technology

SoICT summer school, August 2024

Contents

- Introduction
- Probabilistic models
- Generative models
- Variational auto-encoder
- Generative Adversarial Networks

Draw pictures by descriptions

A bowl of soup

Google

Imagen

A cute corgi lives in a house made out of sushi.

Some successes: ChatGPT (2022)

Human-level Chatting, Writing, QA,...

By <u>Samantha Murphy Kelly</u>, CNN Business Updated 1:35 PM EST, Thu January 26, 2023

Some successes: more

- Probabilistic models of data
- Sample: lấy mẫu dữ liệu (sinh/tạo ra dữ liệu)
- Evaluate likelihood: tính likelihood của dữ liệu cho trước
- Train: huấn luyện
- Representation: biểu diễn mới
- What if all we care about is sampling?
 - Not in the training data, but the novel samples.

Probabilistic models Introduction

- Our assumption on how the data samples were generated (giả thuyết của chúng ta về quá trình mà các mẫu dữ liệu đã được sinh ra như thế nào)
- Example: how a sentence is generated?
 - We assume our brain does as follow:
 - ✤ First choose the topic of the sentence
 - Generate the words one-by-one to form the sentence

Probabilistic model

- A model sometimes consists of
 - Observed variable (e.g., x) which models the observation (data instance) (biến quan sát được)
 - **Hidden variable** which describes the hidden things (e.g., z, φ)
 (biến ẩn)
 - Relations between the variables
- Each variable follows some probability distribution (mõi bién tuân theo một phân bố xác suất nào đó)

Different types of models

- Probabilistic graphical model (PGM): Graph + Probability Theory (mô hình đồ thị xác suất)
 - Each vertex represents a random variable, grey circle means "observed", white circle means "latent"
 - Each edge represents the conditional dependence between two variables
- Latent variable model: a PGM which has at least one latent variable
- Generative model: a model that enables us to generate data instances

- We wish to know the average height of a person
 - We had collected a dataset from 10 people in Hanoi:
 D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}
- Let x denote the random variable that represents the height of a person
- Assumption: x follows a Normal distribution (Gaussian) with the following probability density function (PDF)

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

□ where { μ , σ^2 } are the mean and variance

Note:

- $\square \mathcal{N}(x|\mu, \sigma^2)$ represents the class of normal distributions
- □ This class is parameterized by $\theta = (\mu, \sigma^2)$
- Learning: we need to know specific values of $\{\mu, \sigma^2\}$

- Gaussian mixture model (GMM)
 - Modeling real-valued data
- Latent Dirichlet allocation (LDA)
 - Modeling the topics hidden in textual data
- Hidden Markov model (HMM)
 - D Modeling time-series, i.e., data with time stamps or sequential nature
- Conditional Random Field (CRF)
 - for structured prediction
- Deep generative models
 - D Modeling the hidden structures, generating artificial data

- Inference for a given instance x_n
 (Suy diễn/phán đoán đối với một quan sát cho trước)
 - Recovery of the local variable (e.g., z_n), or
 - The distribution of the local variables (e.g., $P(z_n | \phi, x_n)$)
 - Example: for GMM, we want to know z_n indicating which Gaussian did generate x_n

Learning (estimation)

(Học/ước lượng mô hình)

- Given a training dataset, estimate the joint distribution of the variables
 - E.g., estimate the density function $p(\phi, z_1, ..., z_n, x_1, ..., x_n | \alpha)$
 - E.g., estimate $P(x_1, ..., x_n | \alpha)$
 - E.g., estimate α
 - Inference of local variables is often needed

Sampling data

Make novel data samples, given a trained model (tạo ra dữ liệu mới từ mô hình đã có)

Application:

- Entertainment (ngành giải trí): videos, images, musics, …
- Limited resources: khi khả năng thu thập được ít mẫu dữ liệu
- Fashion: tạo mẫu quần/áo thời trang
- Design: tạo mẫu trang thiết bị mới
- Materials: tạo các vật liệu mới

Generative models Learning

- Given a training set of examples, e.g., images of dogs
- We want to learn a probability distribution P(x) over images x such that
 - * **Generation:** If we sample $x_{new} \sim P(x)$, x_{new} should look like a dog (sampling)
 - ✤ Density estimation: P(x)
 - Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

Dataset $\mathbf{D} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$

Hardness of the learning problem:

- P(x) in the space of all probability distributions
- In practice, we often find a $P_{\theta}(x)$ to **approximate** P(x)

- Ussually, we can choose a restricted set \mathcal{H} of distributions
 - Parameterized by $\theta \in \Theta$
 - A learner must find one $P_{\theta} \in \mathcal{H}$
- Hypothesis space (model family):
 - a set ${\mathcal H}$ of distributions, providing candidates for a learner
 - Represents prior knowledge about a task
 - Represents our inductive bias or preference
- Each P_{θ} is often called a "**model**"
- Gaussian family:

 $\mathcal{H} = \{P_{\theta}: P_{\theta} \text{ is the normal distribution with } \theta = (\mu, \sigma), \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+\}$

- Find a model P_{θ} that precisely captures the distribution P from which our data was sampled
- Intractability:
 - P(x) is in the space of all probability distributions
 - The sampled data set is limited
 - Computational reasons
- We want to select P₀ to be the "best" approximation to the underlying distribution P
 - What is "best"?
 - Depends on specific task of interest

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "**close**" as possible to P (recall we assume we are given a dataset **D** of samples from P)

How do we evaluate "closeness"?

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions P and Q is defined as

$$KL(P||Q) = \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})} \left(\log \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} \right)$$

- where p(x) and q(x) represents the densities of P and Q, respectively • Note that:
 - $KL(P||Q) \ge 0$ for any P and Q, and KL(P||P) = 0
 - $\bullet KL(P||Q) \neq KL(Q||P)$
- It measures the loss (in bits) when describing distribution P by Q.

Learning: a revisit

- We want to construct P_θ as "close" as possible to P (Given a dataset D of samples from P)
- Closeness by KL:

$$KL(P||P_{\theta}) = \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})} \left(\log \frac{p(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \right)$$

• Learning by minimizing $KL(P||P_{\theta})$

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} KL(P || P_{\theta})$$

- Find the parameter θ^* that minimizes $KL(P||P_{\theta})$
- θ^* provides the minimal loss when compressing P by P_{θ^*}

We can rewrite

$$KL(P||P_{\theta}) = \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})} \left(\log \frac{p(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \right) = \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})} (\log p(\boldsymbol{x})) - \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})} (\log p_{\theta}(\boldsymbol{x}))$$

• The first term does not depend on θ

- Minimizing KL is equivalent to maximizing the Expected loglikelihood $\mathbb{E}_{x \sim P(x)}(\log p_{\theta}(x))$
- Learning can be done by Maximum Likelihood Estimation (MLE)

 $\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim P(\boldsymbol{x})}(\log p_{\theta}(\boldsymbol{x}))$

- In general, we do not know P
- So, we cannot access to the objective

• We approximate the expected log-likelihood $\mathbb{E}_{x \sim P(x)}(\log p_{\theta}(x))$ by

$$\mathbb{E}_{\boldsymbol{x} \in \boldsymbol{D}}(\log p_{\theta}(\boldsymbol{x})) = \frac{1}{m} \sum_{\boldsymbol{x} \in \boldsymbol{D}} \log p_{\theta}(\boldsymbol{x})$$

 Sometimes known as Empirical log-likelihood (note the similarity with empirical loss in ML)

MLE is the formulated as

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{1}{m} \sum_{\boldsymbol{x} \in \boldsymbol{D}} \log p_{\theta}(\boldsymbol{x})$$

• This is equivalent to maximizing the likelihood $P(x_1, ..., x_m) = \prod_{i=1}^m P(x_i)$ for i.i.d. samples

• We wish to estimate the height of a person in the world.

• Use a dataset $\mathbf{D} = \{1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62\}$

 $\hfill\square$ Let x be the random variable representing the height of a person.

- $_{\rm D}$ Model: assume that x follows a Gaussian distribution with ${\it unknown}$ mean μ and variance σ^2
- **Learning:** estimate (μ, σ) from the given data $D = \{x_1, \dots, x_{10}\}$.
- Let $f(x|\mu,\sigma)$ be the density function of the Gaussian family, parameterized by (μ,σ) .
 - $\Box f(x_n | \mu, \sigma)$ is the likelihood of instance x_n .
 - $\Box f(\mathbf{D}|\mu,\sigma)$ is the likelihood function of **D**.
- Using MLE, we will find

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} f(\boldsymbol{D} | \mu, \sigma)$$

MLE: Gaussian example (2)

- i.i.d assumption: we assume that the data are independent and identically distributed (dữ liệu được sinh ra một cách độc lập)
 - □ As a result, we have $P(\mathbf{D}|\mu,\sigma) = P(x_1, ..., x_{10}|\mu,\sigma) = \prod_{i=1}^{10} P(x_i|\mu,\sigma)$

Using this assumption, MLE will be

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} f(x_i | \mu, \sigma) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

= $\arg \max_{\mu, \sigma} \log \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$
= $\arg \max_{\mu, \sigma} \sum_{i=1}^{10} \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 - \log \sqrt{2\pi\sigma^2} \right)$

• Using gradients (w.r.t μ , σ), we can find

$$\mu_* = \frac{1}{10} \sum_{i=1}^{10} x_i = 1.683, \qquad \sigma_*^2 = \frac{1}{10} \sum_{i=1}^{10} (x_i - \mu_*)^2 \approx 0.0015$$

Generative models Approximation by mixture models

Learning the data distribution

- Dataset $D = \{x_1, x_2, ..., x_m\}$
 - Images about dogs
- Hardness of the learning problem:
 - P(x) is in the space of all probability distributions
- In practice, we often find a $P_{\theta}(x)$ to **approximate** P(x)
- How to choose a good model family?
 - Gaussian family?
 too simple

- GMM: we assume that the data are samples from K Gaussian distributions.
 - Each instance x is generated from one of those K Gaussians by the following generative process:
 - * Take the component index $z \sim Categorical(\phi)$
 - Generate $\mathbf{x} \sim Normal(\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$
- The density function is

$$q(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\phi}) = \sum_{k=1}^{K} \phi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

 $\Box \phi = (\phi_1, ..., \phi_K)$ represents the weights of the Gaussians: $\sum_{k=1}^{K} \phi_k = 1$, $\phi_j \ge 0$, $\forall j$

■ Each Gaussian has density $\mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right]$ ■ Note: z is an unobserved (latent) variable, x is observable

GMM: approximation ability

• The density $q(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\phi}) = \sum_{k=1}^{K} \phi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$

• Gaussian model: K = 1 component

A larger K produces a more complex model Q

GMMs are universal approximators

Any smooth density can be approximated arbitrarily well by a GMM with enough components

Dalal, S. R., and W. J. Hall. "Approximating Priors by Mixtures of Natural Conjugate Priors." J. of the Royal Statistical Society. Series B (Methodological), vol. 45, no. 2, 1983, pp. 278–286.

- Mixture of an infinite number of Gaussians: we assume that the data are samples from an infinite number of Gaussians
 - Each instance x is generated from one of those Gaussians by the following generative process:
 - Choose $z \sim Normal(0, I)$ P(z)
 - * Generate $x \sim Normal(\mu_{\theta}(z), \Sigma_{\theta}(z))$
 - Where μ_{θ} , Σ_{θ} are neural networks, parameterized by θ

Universal approximator?

Each component is simple, but the marginal P(x) is very complex

P(x | z)

Variational auto-encoder

Variational inference, Amortized inference, Sampling Learning by MLE:

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \frac{1}{m} \sum_{\boldsymbol{x} \in \boldsymbol{D}} \log p_{\theta}(\boldsymbol{x})$$

• where
$$p_{\theta}(\boldsymbol{x}) = \sum_{k=1}^{K} \phi_k \frac{1}{\sqrt{\det(2\pi\Sigma_k)}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_k)\right], \ \theta = (\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

• Evaluation of $\log p_{\theta}(\mathbf{x})$ is **hard** in general, since

$$\log p_{\theta}(\mathbf{x}) = \log \sum_{\text{All possible values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})$$

• E.g., for $z \in \{0,1\}^{100}$, the sum has 2^{100} terms

It is even harder for more complex models

 \rightarrow Approximation is needed

Note

$$\log p_{\theta}(\boldsymbol{x}) = \log \sum_{\boldsymbol{z} \in \boldsymbol{\mathcal{Z}}} p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) = \log \sum_{\boldsymbol{z} \in \boldsymbol{\mathcal{Z}}} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})} p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) = \log \mathbb{E}_{q(\boldsymbol{z})} \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})}$$

Since log is concave, Jensen Inequality suggests

$$\log \mathbb{E}_{q(z)} \frac{p_{\theta}(x, z)}{q(z)} \ge \mathbb{E}_{q(z)} \log \frac{p_{\theta}(x, z)}{q(z)} = \mathbb{E}_{q(z)} \log p_{\theta}(x, z) - \mathbb{E}_{q(z)} \log q(z)$$

This is called the Evidence Lower Bound (**ELBO**)
For any $q(z)$

$$\log p_{\theta}(\boldsymbol{x}) \geq ELBO$$

• For ELBO = $\mathbb{E}_{q(\mathbf{z})} \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \mathbb{E}_{q(\mathbf{z})} \log q(\mathbf{z})$

• When $q(\mathbf{z}) = p_{\theta}(\mathbf{z}|\mathbf{x})$:

 $\log p_{\theta}(\boldsymbol{x}|\boldsymbol{\theta}) = \mathbb{E}_{p_{\theta}(\boldsymbol{z}|\boldsymbol{x})} \log p_{\theta}(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}) - \mathbb{E}_{p_{\theta}(\boldsymbol{z}|\boldsymbol{x})} \log p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) = \boldsymbol{E}\boldsymbol{L}\boldsymbol{B}\boldsymbol{O}$

• When the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ is easy to compute, we can learn the model by maximizing

$$\frac{1}{m}\sum_{\boldsymbol{x}\in\boldsymbol{D}}\log p_{\theta}(\boldsymbol{x}) = \frac{1}{m}\sum_{\boldsymbol{x}\in\boldsymbol{D}} \left[\mathbb{E}_{p_{\theta}(\boldsymbol{z}|\boldsymbol{x})}\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) - \mathbb{E}_{p_{\theta}(\boldsymbol{z}|\boldsymbol{x})}\log p_{\theta}(\boldsymbol{z}|\boldsymbol{x})\right]$$

- E.g., for the case of GMM
- What if the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ is intractable to compute?

Variational inference (VI):

- choose a family of simple distributions $q_{\varphi}(z)$, parameterized by φ (variational parameters)
- then find φ^* so that $q_{\varphi^*}(\mathbf{z})$ is as close as possible to $p_{\theta}(\mathbf{z}|\mathbf{x})$

Maximize the ELBO

$$\frac{1}{m} \sum_{i=1}^{m} \left[\mathbb{E}_{q_{\varphi_i}(\boldsymbol{z})} \log p_{\theta}(\boldsymbol{x}_i, \boldsymbol{z} | \boldsymbol{\theta}) - \mathbb{E}_{q_{\varphi_i}(\boldsymbol{z})} \log q_{\varphi_i}(\boldsymbol{z}) \right]$$

• given a training set $\mathbf{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$

- Maximizing ELBO is equivalent to Minimizing KL, due to $\log p_{\theta}(\mathbf{x}) = ELBO + KL(q_{\varphi}(\mathbf{z})||p_{\theta}(\mathbf{z}|\mathbf{x}))$
- Jointly optimize over
 - $\varphi_1, \ldots, \varphi_m$ (variational parameters)
 - θ (model parameters)

Pros:

- Easy to be used in a large class of models
- Efficient in practice

Cons:

Hard to choose a good variational family

Variational inference (VI):

- choose a family of simple distributions q_φ(z), parameterized by φ
- find φ* so that q_{φ*}(z) is as
 close as possible to p_θ(z|x)
- When we do not know the explicit form for the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$
- For inference, given model param θ and instance x, we estimate the posterior $p_{\theta}(z|x)$ by solving an optimization problem:

$$\max_{\varphi} \mathbb{E}_{q_{\varphi}(\boldsymbol{z})} \log p_{\theta}(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) - \mathbb{E}_{q_{\varphi}(\boldsymbol{z})} \log q_{\varphi}(\boldsymbol{z})$$

- Require too many variational parameters
 - Each instance \mathbf{x}_i requires one specific $\varphi_i \rightarrow O(m)$ parameters
 - GMM needs O(mKn²) params, where K is #components, n is #dims

$$\max_{\theta} \frac{1}{m} \sum_{\boldsymbol{x} \in \boldsymbol{D}} \log p_{\theta}(\boldsymbol{x}) \geq \max_{\theta, \varphi_{1}, \dots, \varphi_{m}} \frac{1}{m} \sum_{\boldsymbol{x}_{i} \in \boldsymbol{D}} L(\boldsymbol{x}_{i}; \theta, \varphi)$$

• Where $L(\mathbf{x}_i; \theta, \varphi) = \mathbb{E}_{q_{\varphi_i}(\mathbf{z})} \log p_{\theta}(\mathbf{x}_i, \mathbf{z} | \theta) - \mathbb{E}_{q_{\varphi_i}(\mathbf{z})} \log q_{\varphi_i}(\mathbf{z})$

- VI uses φ_i for each point \mathbf{x}_i .
 - May not scale well with large datasets; prone to overfitting
- **Amortization:** we learn a **single** neural network $f_w: x \mapsto \varphi$ that maps each input **x** to a set of (good) variational parameters
 - f_w has a trainable parameter w
 - For a given input \mathbf{x}_i , f_w will produce the parameter $\varphi_i = f_w(\mathbf{x}_i)$ of the variational distribution $q_{\varphi_i}(\mathbf{z})$
- Amortized inference: feed instance **x** to the trained network to get the variational parameter $\varphi = f_w(\mathbf{x})$
 - No optimization \rightarrow cheap

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. *ICLR*. We can use using stochastic gradient descent to solve

$$\max_{\theta,\varphi_1,\ldots,\varphi_m}\sum_{\boldsymbol{x}_i\in\boldsymbol{D}} L(\boldsymbol{x}_i;\theta,\varphi)$$

Initialize $heta^{(0)}, arphi^{(0)}$

- At iteration $j \ge 1$:
 - Randomly sample a data point x_i from D
 - Compute $\nabla_{\theta} L(x_i; \theta^{(j-1)}, \varphi^{(j-1)})$ and $\nabla_{\varphi} L(x_i; \theta^{(j-1)}, \varphi^{(j-1)})$
 - Update $\theta^{(j)}, \varphi^{(j)}$ in the gradient direction
- How to compute the gradients?
 - $L(\mathbf{x}_i; \theta, \varphi) = \mathbb{E}_{q_{\varphi_i}(\mathbf{z})} \log p_{\theta}(\mathbf{x}_i, \mathbf{z} | \theta) \mathbb{E}_{q_{\varphi_i}(\mathbf{z})} \log q_{\varphi_i}(\mathbf{z})$
 - \blacksquare The expectation complicates gradient computation for φ

Consider **z** being **continuous**, and we want to compute a gradient with respect to φ of

$$\mathbb{E}_{q_{\varphi}(\mathbf{z})}[r(\mathbf{z})] = \int q_{\varphi}(\mathbf{z})r(\mathbf{z})d\mathbf{z}$$

• Suppose $q_{\varphi}(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ is Gaussian with parameters $\varphi = (\boldsymbol{\mu}, \sigma)$

Since $z \sim q_{\varphi}(z)$, there exists representation $z = \mu + \sigma \epsilon$ where $\epsilon \sim \mathcal{N}(0, I)$ We can write

$$\mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z})}[r(\mathbf{z})] = \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})}[r(\boldsymbol{\mu} + \sigma \boldsymbol{\epsilon})]$$
$$\nabla_{\varphi} \mathbb{E}_{q_{\varphi}(\mathbf{z})}[r(\mathbf{z})] = \nabla_{\varphi} \mathbb{E}_{\boldsymbol{\epsilon}}[r(\boldsymbol{\mu} + \sigma \boldsymbol{\epsilon})] = \mathbb{E}_{\boldsymbol{\epsilon}} [\nabla_{\varphi} r(\boldsymbol{\mu} + \sigma \boldsymbol{\epsilon})]$$

• Easy to estimate via Monte Carlo if r is differentiable w.r.t. φ , since ϵ is easy to sample

•
$$\mathbb{E}_{\epsilon} \left[\nabla_{\varphi} r(\mu + \sigma \epsilon) \right] \approx \frac{1}{K} \sum_{j=1}^{K} \nabla_{\varphi} r(\mu + \sigma \epsilon_{j}), \quad \text{where } \epsilon_{1}, \dots, \epsilon_{K} \sim \mathcal{N}(0, I)$$

Since $q_{\varphi}(z)$ approximates the posterior $p_{\theta}(z|x)$, we can write it as $q_{\varphi}(z|x)$ and

$$\begin{aligned} \mathsf{L}(\boldsymbol{x};\theta,\varphi) &= \mathbb{E}_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \log p_{\theta}(\boldsymbol{x},\boldsymbol{z}|\theta) - \mathbb{E}_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \log q_{\varphi}(\boldsymbol{z}|\boldsymbol{x}) \\ &= \mathbb{E}_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \Big[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}|\theta) - \log p_{\theta}(\boldsymbol{z}) + \log p_{\theta}(\boldsymbol{z}) - \log q_{\varphi}(\boldsymbol{z}|\boldsymbol{x}) \Big] \\ &= \mathbb{E}_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \Big[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \Big] - KL(q_{\varphi}(\boldsymbol{z}|\boldsymbol{x}) || p_{\theta}(\boldsymbol{z})) \end{aligned}$$

• Maximize L: maximize $p_{\theta}(\mathbf{x}|\mathbf{z})$ and push $q_{\varphi}(\mathbf{z}|\mathbf{x})$ close to $p_{\theta}(\mathbf{z})$

Encoder:

• Maps each data point x to a latent vector \hat{z} , a sample from a Gaussian $(q_{\varphi}(z|x))$ with parameter $(\mu, \sigma) = Encoder_{\varphi}(x)$

Decoder:

• Reconstruct \hat{x} from a latent vector \hat{z} , i.e., pick a sample from a Gaussian $(p_{\theta}(x|\hat{z}))$ with parameter $Decoder_{\theta}(\hat{z})$

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR.

$$L(\mathbf{x};\theta,\varphi) = \mathbb{E}_{q_{\varphi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - KL(q_{\varphi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}))$$

Maximizing L:

- The first term encourages accurate reconstruction $\widehat{x} \approx x$
- The KL term encourages \hat{z} to have a distribution similar to the prior $p_{\theta}(z)$
- Training: SGD + reparameterization trick

Image from Stefano Ermon

VAE: some properties

Pros:

- Efficient inference
- Flexible and expressive (Universal approximator)
- Good diversity of the synthetic samples
- Cons:
 - Blur images

VQ-VAE (2017)

Generative Adversarial Networks Introduction

(Adapted from a lecture by Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan, UC Berkeley, 2020)

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{data}} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log \left(1 - D(G(\boldsymbol{z})) \right) \right]$$

- Two player minimax game between generator (G) and discriminator (D)
- D tries to maximize the log-likehood for the binary classification problem (D cố gắng cực đại hoá hàm log-likehood của bài toán phân loại nhị phân)
 - Data: real (1)
 - Generated: fake (0)
- G tries to minimize the log-probability of its samples being classified as "fake" by the discriminator D
 (G cố gắng cực tiểu hoá xác suất để D phân loại chính xác các mẫu dữ liệu do G tạo ra)

D and G can be represented as two neural networks

Discriminator:

 $D(\mathbf{x}) = NN(\mathbf{x}; \theta_d)$

- * θ_d is the weight of the neural network which takes a sample **x** as input.
- Output is a value in [0, 1].
 (biểu diễn D bằng một mạng nơron với trọng số θ_d, với đầu vào x thì trả về một giá trị thuộc [0, 1])

• Generator:

 $G(\mathbf{z}) = NN(\mathbf{z}; \theta_g)$

- * θ_g is the weight of the neural network which takes a noise z as input.
- ✤ z often follows a simple distribution, and is of low dimensionality.
- Output is a fake sample x = G(z).
 (biểu diễn G bằng một mạng nơron với trọng số θ_g, với đầu vào z thì trả về một mẫu dữ liệu x)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

- for k steps do
 - Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 - Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
 - Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

See it in action: http://poloclub.github.io/ganlab/

Samples in green regions are likely to be real; those in purple regions likely fake.

Figure from [Goodfellow et al., NeurIPS 2014]

50

- Key pieces of GAN
 - Fast sampling
 - No inference
 - Notion of optimizing directly for what you care about
 - perceptual samples

What's the optimal discriminator given generated and true distributions?

$$V(G,D) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p(z)}\left[\log\left(1 - D(G(z))\right)\right]$$
$$= \int_{x} p_{data}(x) \log D(x) \, dx + \int_{z} p(z) \log\left(1 - D(G(z))\right) dz$$
$$= \int_{x} p_{data}(x) \log D(x) \, dx + \int_{x} p_{g}(x) \log(1 - D(x)) \, dx$$
$$= \int_{x} \left[p_{data}(x) \log D(x) + p_{g}(x) \log(1 - D(x)) \right] dx$$

 $\nabla_{y}[a\log y + b\log(1-y)] = 0 \implies y^{*} = \frac{a}{a+b} \quad \forall (a,b) \in \mathbb{R}^{2} \setminus (0,0)$

$$\Rightarrow D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

GAN: Bayes optimal discriminator

53

$$V(G, D^*) = \mathbb{E}_{x \sim p_{data}}[\log D^*(x)] + \mathbb{E}_{z \sim p_g}[\log(1 - D^*(x))]$$

$$= \mathbb{E}_{x \sim p_{data}} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right] + \mathbb{E}_{z \sim p_g} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right]$$
$$= -\log(4) + \underbrace{KL \left(p_{data} \parallel \frac{p_{data} + p_g}{2} \right) + KL \left(p_g \parallel \frac{p_{data} + p_g}{2} \right)}_{2}$$

 $(\text{Jensen-Shannon Divergence (JSD) of } p_{data} \text{ and } p_g) \ge 0$

(KL(p||q) is the Kullback-Leibler divergence between p and q)

 $V(G^*, D^*) = -\log(4)$ when $p_g = p_{data}$

 Given the Bayes-optimal D*, solving for G is equivalent to minimizing the JSD divergence between p_{data} and p_g

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the three measures of distance between distributions.

["A note on the evaluation of generative models" -- Theis, Van den Oord, Bethge 2015]

KL and JSD

For given p(x), find $q^*(x)$ that minimizes the divergence between them

- For compression, one would prefer to ensure all points in the data distribution are assigned probability mass.
- For generating good samples, blurring across modes spoils perceptual quality because regions outside the data manifold are assigned non-zero probability mass.
- Picking one mode without assigning probability mass on points outside can produce "better-looking" samples.
- Caveat: More expressive density models can place probability mass more accurately.

Mode Collapse

Standard GAN training collapses when the true distribution is a mixture of gaussians (Figure from Metz et al 2016)

More?

Variational Autoencoders, Normalizing Flows

> Xiao, Z., Kreis, K., & Vahdat, A. Tackling the Generative Learning Trilemma with Denoising Diffusion GANs. In *ICLR*, 2022.

Thank you Contact: khoattq@soict.hust.edu.vn