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3Some successes: Text-to-image (2022)

 Draw pictures by descriptions

A bowl of soup

Midjourney

DALL-E 2

Imagen



4Some successes: ChatGPT (2022)

Human-level Chatting, Writing, QA,…

Why ChatGPT is 
about to change 
how you work, 
like it or not?
- Forbes, 2/2023



5Some successes: more

AlphaGeometry 
≈ Olympiad-level student



6Generative Models

❑ Probabilistic models of data

❑ Sample: lấy mẫu dữ liệu (sinh/tạo ra dữ liệu)

❑ Evaluate likelihood: tính likelihood của dữ liệu cho trước

❑ Train: huấn luyện

❑ Representation: biểu diễn mới

❑ What if all we care about is sampling?

❖ Not in the training data, but the novel samples.



Probabilistic models
Introduction
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8Probabilistic model

❑ Our assumption on how the data samples were generated

(giả thuyết của chúng ta về quá trình mà các mẫu dữ liệu đã được sinh 

ra như thế nào)

❑ Example: how a sentence is generated?

❖ We assume our brain does as follow:

❖ First choose the topic of the sentence

❖ Generate the words one-by-one to form the sentence

❑ How will TIM be drawn?

1. 2. 3. 4.

5.6.7.8.

drawinghowtodraw.com



9Probabilistic model

❑ A model sometimes consists of

❖ Observed variable (e.g., 𝒙) which models 

the observation (data instance)

(biến quan sát được)

❖ Hidden variable which describes the 

hidden things (e.g., 𝑧, 𝜙)

(biến ẩn)

❖ Relations between the variables

❑ Each variable follows some probability distribution 

(mỗi biến tuân theo một phân bố xác suất nào đó)

xz

𝛼 𝜙

N



10Different types of models

 Probabilistic graphical model (PGM): Graph + Probability Theory

(mô hình đồ thị xác suất)

 Each vertex represents a random variable,

grey circle means “observed”, 

white circle means “latent”

 Each edge represents the conditional 

dependence between two variables

 Latent variable model: a PGM which has at least one latent variable

 Generative model: a model that enables us to generate data instances

xz

𝛼 𝜙

N



11Univariate normal distribution

 We wish to know the average height of a person 

 We had collected a dataset from 10 people in Hanoi: 

D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}

 Let x denote the random variable that represents the height of a person

 Assumption: x follows a Normal distribution (Gaussian) with the following 

probability density function (PDF)

       𝒩 𝑥 𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥−𝜇 2

 

 where {𝜇, 𝜎2} are the mean and variance

 Note: 

 𝒩 𝑥 𝜇, 𝜎2) represents the class of normal distributions 

 This class is parameterized by 𝜽 = (𝜇, 𝜎2)

 Learning: we need to know specific values of {𝜇, 𝜎2}

x

𝜇 𝜎2



12PGM: some well-known models

 Gaussian mixture model (GMM)

 Modeling real-valued data

 Latent Dirichlet allocation (LDA)

 Modeling the topics hidden in textual data

 Hidden Markov model (HMM)

 Modeling time-series, i.e., data with time stamps or sequential nature

 Conditional Random Field (CRF)

 for structured prediction

 Deep generative models

 Modeling the hidden structures, generating artificial data



13Probabilistic model: inference & learning

❑ Inference for a given instance 𝒙𝑛 

(Suy diễn/phán đoán đối với một quan sát cho trước)

❖ Recovery of the local variable (e.g., 𝑧𝑛), or

❖ The distribution of the local variables 

(e.g., 𝑃 𝑧𝑛 𝜙, 𝒙𝑛))

❖ Example: for GMM, we want to know 𝑧𝑛 

indicating which Gaussian did generate 𝒙𝑛 

❑ Learning (estimation)

(Học/ước lượng mô hình)

❖ Given a training dataset, estimate the joint distribution of the variables

❖ E.g., estimate the density function 𝑝 𝜙, 𝑧1, … , 𝑧𝑛, 𝒙1, … , 𝒙𝑛 𝛼)

❖ E.g., estimate 𝑃 𝒙1, … , 𝒙𝑛 𝛼)

❖ E.g., estimate 𝛼

❖ Inference of local variables is often needed

xz

𝛼 𝜙

N



14Generative model: sampling

❑ Sampling data

❖ Make novel data samples, given a trained model

(tạo ra dữ liệu mới từ mô hình đã có)

❑ Application:

❖ Entertainment (ngành giải trí): videos, images, musics, …

❖ Limited resources: khi khả năng thu thập được ít mẫu  dữ liệu

❖ Fashion: tạo mẫu quần/áo thời trang

❖ Design: tạo mẫu trang thiết bị mới

❖ Materials: tạo các vật liệu mới

❖ …



Generative models
Learning

15
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Learning a generative model

 Given a training set of examples, e.g., images of dogs

 We want to learn a probability distribution P(x) over images x

such that

❖ Generation: If we sample 𝒙𝑛𝑒𝑤 ∼ 𝑃(𝒙), 𝒙𝑛𝑒𝑤 should look like a dog 

(sampling)

❖ Density estimation: P(x)

❖ Unsupervised representation learning: We should be able to learn what 

these images have in common, e.g., ears, tail, etc. (features)
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The sampling distribution

Dataset D = {x1, x2, …, xm}

Hardness of the learning problem:

 P(x) in the space of all probability distributions

 In practice, we often find a 𝑃𝜃(𝒙) to approximate 𝑃(𝒙)

Impossible

𝑝𝜃
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Hypothesis space

Ussually, we can choose a restricted set ℋ of distributions

 Parameterized by 𝜃 ∈ Θ

A learner must find one 𝑃𝜃 ∈ ℋ

Hypothesis space (model family): 

a set ℋ of distributions, providing candidates for a learner

 Represents prior knowledge about a task

 Represents our inductive bias or preference

Each 𝑃𝜃 is often called a “model”

Gaussian family: 

ℋ = 𝑃𝜃: 𝑃𝜃 is the normal distribution with 𝜃 = 𝜇, 𝜎 , 𝜇 ∈ ℝ, 𝜎 ∈ ℝ+

ℋ

𝑃
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Learning goal

Find a model 𝑃𝜃 that precisely captures the distribution P from 

which our data was sampled

 Intractability:

 P(x) is in the space of all probability distributions

 The sampled data set is limited

Computational reasons

We want to select Pθ to be the ”best” approximation to the 

underlying distribution P

What is “best”?

Depends on specific task of interest

ℋ

𝑃

𝑃𝜃
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Learning as density estimation

We want to learn the full distribution so that later we can answer 

any probabilistic inference query

 In this setting we can view the learning problem as density 

estimation

We want to construct 𝑃𝜃 as ”close” as possible to P 

(recall we assume we are given a dataset D of samples from P)

How do we 

evaluate 
”closeness”?
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KL-divergence

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two 

distributions P and Q is defined as

𝐾𝐿(𝑃| 𝑄 = 𝔼𝒙~𝑃(𝒙) log
𝑝(𝒙)

𝑞(𝒙)

where p(𝒙) and q(𝒙) represents the densities of P and Q, respectively

Note that: 

 𝐾𝐿(𝑃| 𝑄 ≥ 0 for any P and Q, and 𝐾𝐿(𝑃| 𝑃 = 0

 𝐾𝐿(𝑃| 𝑄  ≠ 𝐾𝐿(𝑄| 𝑃

 It measures the loss (in bits) when describing distribution P by Q.
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Learning: a revisit

We want to construct Pθ as ”close” as possible to P 

(Given a dataset D of samples from P)

Closeness by KL:

𝐾𝐿(𝑃| 𝑃𝜃 = 𝔼𝒙~𝑃(𝒙) log
𝑝(𝒙)

𝑝𝜃(𝒙)

Learning by minimizing 𝐾𝐿(𝑃| 𝑃𝜃

𝜃∗ = argmin
𝜃∈Θ

𝐾𝐿(𝑃| 𝑃𝜃

 Find the parameter 𝜃∗ that minimizes 𝐾𝐿(𝑃| 𝑃𝜃

 𝜃∗ provides the minimal loss when compressing P by 𝑃𝜃∗

ℋ

𝑃

𝑃𝜃∗
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Expected log-likelihood

We can rewrite

𝐾𝐿(𝑃| 𝑃𝜃 = 𝔼𝒙~𝑃 𝒙 log
𝑝 𝒙

𝑝𝜃 𝒙
= 𝔼𝒙~𝑃 𝒙 log 𝑝 𝒙 − 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

 The first term does not depend on 𝜃

Minimizing 𝐾𝐿 is equivalent to maximizing the Expected log-

likelihood 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

Learning can be done by Maximum Likelihood Estimation (MLE)

𝜃∗ = argmax
𝜃∈Θ

𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

 In general, we do not know P

 So, we cannot access to the objective
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Maximum likelihood

We approximate the expected log-likelihood 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙) by

𝔼𝒙∈𝑫 log 𝑝𝜃(𝒙) =
1

𝑚


𝒙∈𝑫

log 𝑝𝜃(𝒙)

 Sometimes known as Empirical log-likelihood

(note the similarity with empirical loss in ML)

MLE is the formulated as

𝜃∗ = argmax
𝜃∈Θ

1

𝑚


𝒙∈𝑫

log 𝑝𝜃(𝒙)

 This is equivalent to maximizing the likelihood 𝑃 𝒙1, … , 𝒙𝑚 = ς𝑖=1
𝑚 𝑃 𝒙𝑖 for 

i.i.d. samples
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MLE: Gaussian example (1)

We wish to estimate the height of a person in the world. 

Use a dataset D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}

 Let x be the random variable representing the height of a person.

 Model: assume that x follows a Gaussian distribution with unknown mean 𝜇 
and variance 𝜎2

 Learning: estimate (𝜇, 𝜎) from the given data 𝑫 =  {𝑥1, … , 𝑥10}.

 Let 𝑓(𝑥|𝜇, 𝜎) be the density function of the Gaussian family, 

parameterized by (𝜇, 𝜎). 

 𝑓(𝑥𝑛|𝜇, 𝜎) is the likelihood of instance 𝑥𝑛.

 𝑓(𝑫|𝜇, 𝜎) is the likelihood function of D.

Using MLE, we will find 

𝜇∗, 𝜎∗ = arg max
𝜇,𝜎

𝑓(𝑫|𝜇, 𝜎)



MLE: Gaussian example (2)
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 i.i.d assumption: we assume that the data are independent and 

identically distributed (dữ liệu được sinh ra một cách độc lập)

 As a result, we have 𝑃 𝑫 𝜇, 𝜎 = 𝑃 𝑥1, … , 𝑥10 𝜇, 𝜎 = ς𝑖=1
10 𝑃 𝑥𝑖 𝜇, 𝜎

Using this assumption, MLE will be 

𝜇∗, 𝜎∗ = arg max
𝜇,𝜎

ෑ
𝑖=1

10

𝑓 𝑥𝑖 𝜇, 𝜎 = arg max
𝜇,𝜎

ෑ

𝑖=1

10
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥𝑖−𝜇 2

= arg max
𝜇,𝜎

log ෑ

𝑖=1

10
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥𝑖−𝜇 2

= arg max
𝜇,𝜎



𝑖=1

10

−
1

2𝜎2 𝑥𝑖 − 𝜇 2 − log 2𝜋𝜎2

Using gradients (w.r.t 𝜇, 𝜎), we can find

𝜇∗ =
1

10


𝑖=1

10

𝑥𝑖 = 1.683, 𝜎∗
2 =

1

10


𝑖=1

10

(𝑥𝑖−𝜇∗)2 ≈ 0.0015

Log trick,

log ≝ ln  



Generative models
Approximation by 

mixture models

27



28Learning the data distribution

 Dataset D = {x1, x2, …, xm}

❖ Images about dogs

 Hardness of the learning 
problem:

❖ P(x) is in the space of all 

probability distributions

 In practice, we often find a 
𝑃𝜃(𝒙) to approximate 𝑃(𝒙)

 How to choose a good model 
family?

❖ Gaussian family? 
=> too simple



29
Gaussian mixture model (GMM)

❑ GMM: we assume that the data are samples from K Gaussian 

distributions. 

❑ Each instance x is generated from one of those K Gaussians by the 

following generative process:

❖ Take the component index 𝑧 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓)

❖ Generate 𝒙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙( 𝝁𝑧 , 𝜮𝑧)

❑ The density function is

𝑞(𝒙|𝝁, 𝜮, 𝝓) = 

𝑘=1

𝐾

𝜙𝑘𝒩 𝒙 𝝁𝑘, 𝜮𝑘)

 𝝓 = (𝜙1, … , 𝜙𝐾) represents the weights of the Gaussians: σ𝑘=1
𝐾 𝜙𝑘 = 1,  𝜙𝑗 ≥ 0, ∀𝑗

 Each Gaussian has density 𝒩 𝒙 𝝁, 𝜮) =
1

det(2𝜋𝜮)
exp −

1

2
𝒙 − 𝝁 𝑇𝜮−1 𝒙 − 𝝁

Note: z is an unobserved (latent) variable, x is observable
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GMM: approximation ability

The density 𝑞(𝒙|𝝁, 𝜮, 𝝓) = σ𝑘=1
𝐾 𝜙𝑘𝒩 𝒙 𝝁𝑘, 𝜮𝑘)

Gaussian model: 𝐾 = 1 component

A larger K produces a more complex model Q

GMMs are universal approximators

Any smooth density can be approximated arbitrarily well by a GMM 

with enough components

GMM with 2 components GMM with 3 components

Dalal, S. R., and W. J. Hall. "Approximating Priors by Mixtures of Natural Conjugate Priors." J. 

of the Royal Statistical Society. Series B (Methodological), vol. 45, no. 2, 1983, pp. 278–286.
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Infinite GMM

❑ Mixture of an infinite number of Gaussians: we assume that the 

data are samples from an infinite number of Gaussians 

❑ Each instance x is generated from one of those Gaussians by the 

following generative process:

❖ Choose 𝒛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑰)

❖ Generate 𝒙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝝁𝜃(𝒛), 𝜮𝜃(𝒛))

❖ Where 𝝁𝜃 , 𝜮𝜃 are neural networks, parameterized by 𝜃

Universal approximator?

Each component is simple, but the marginal P(x) is very complex

P(z)

P(x|z)



Variational auto-encoder
Variational inference,

Amortized inference, 
Sampling

32
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Learning for GMM

Learning by MLE:

𝜃∗ = argmax
𝜃

1

𝑚


𝒙∈𝑫

log 𝑝𝜃(𝒙)

where 𝑝𝜃 𝒙 = σ𝑘=1
𝐾 𝜙𝑘

1

det(2𝜋𝜮𝑘)
exp −

1

2
𝒙 − 𝝁𝑘

𝑇𝜮𝑘
−1 𝒙 − 𝝁𝑘 , 𝜃 = (𝝓, 𝝁, 𝜮)

Evaluation of log 𝑝𝜃(𝒙) is hard in general, since

log 𝑝𝜃(𝒙) = log 

All possible values of 𝒛

𝑝𝜃(𝒙, 𝒛)

 E.g., for 𝒛 ∈ 0,1 100, the sum has 2100 terms

 It is even harder for more complex models

➔Approximation is needed
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Evidence Lower Bound

Note 

log 𝑝𝜃(𝒙) = log 

𝒛∈𝓩

𝑝𝜃(𝒙, 𝒛) = log 

𝒛∈𝓩

𝑞(𝒛)

𝑞(𝒛)
𝑝𝜃(𝒙, 𝒛) = log 𝔼𝑞(𝒛)

𝑝𝜃(𝒙, 𝒛)

𝑞(𝒛)

Since log is concave, Jensen Inequality suggests

log 𝔼𝑞(𝒛)

𝑝𝜃(𝒙, 𝒛)

𝑞(𝒛)
≥ 𝔼𝑞 𝒛 log

𝑝𝜃 𝒙, 𝒛

𝑞 𝒛
= 𝔼𝑞 𝒛 log 𝑝𝜃 𝒙, 𝒛 − 𝔼𝑞 𝒛 log 𝑞 𝒛

This is called the Evidence Lower Bound (ELBO)

For any 𝑞 𝒛

log 𝑝𝜃(𝒙) ≥ 𝐸𝐿𝐵𝑂

 For ELBO = 𝔼𝑞 𝒛 log 𝑝𝜃 𝒙, 𝒛 − 𝔼𝑞 𝒛 log 𝑞 𝒛

When 𝑞 𝒛 = 𝑝𝜃 𝒛 𝒙 :

log 𝑝𝜃(𝒙|𝜽) = 𝔼𝑝𝜃(𝒛|𝒙) log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑝𝜃(𝒛|𝒙) log 𝑝𝜃 𝒛 𝒙 = 𝑬𝑳𝑩𝑶
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Variational inference

When the posterior 𝑝𝜃 𝒛 𝒙 is easy to compute, we can learn the 

model by maximizing 

1

𝑚


𝒙∈𝑫

log 𝑝𝜃(𝒙) =
1

𝑚


𝒙∈𝑫

𝔼𝑝𝜃 𝒛 𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑝𝜃 𝒛 𝒙 log 𝑝𝜃 𝒛 𝒙

 E.g., for the case of GMM

What if the posterior 𝑝𝜃 𝒛 𝒙 is intractable to compute?

Variational inference (VI):

 choose a family of simple distributions 𝑞𝜑(𝒛), 

parameterized by 𝜑 (variational parameters) 

 then find 𝜑∗ so that 𝑞𝜑∗(𝒛) is as close as 

possible to 𝑝𝜃 𝒛 𝒙
𝑞𝜑

𝑝𝜃
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VI and KL

Maximize the ELBO 

1

𝑚


𝑖=1

𝑚

𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖, 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

given a training set D = {x1, x2, …, xm}

Maximizing ELBO is equivalent to Minimizing KL, due to

log 𝑝𝜃(𝒙) = 𝐸𝐿𝐵𝑂 + 𝐾𝐿(𝑞𝜑 𝒛 ||𝑝𝜃 𝒛 𝒙 )

Jointly optimize over

 𝜑1, … , 𝜑𝑚 (variational parameters)

 𝜃 (model parameters) 
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VI: some properties

Pros:

 Easy to be used in a large class of models

 Efficient in practice

Cons:

Hard to choose a good variational family

 When we do not know the explicit form for the posterior 𝑝𝜃 𝒛 𝒙

 For inference, given model param 𝜃 and instance 𝒙, we estimate the 

posterior 𝑝𝜃 𝒛 𝒙 by solving an optimization problem: 

max
𝜑

 𝔼𝑞𝜑 𝒛 log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑞𝜑 𝒛 log 𝑞𝜑 𝒛

 Require too many variational parameters

 Each instance xi requires one specific 𝜑𝑖 ➔ O(m) parameters

 GMM needs O(mKn2) params, where K is #components, n is #dims

 Variational inference (VI):

 choose a family of simple

distributions 𝑞𝜑(𝒛), 

parameterized by 𝜑

 find 𝜑∗ so that 𝑞𝜑∗(𝒛) is as 

close as possible to 𝑝𝜃 𝒛 𝒙

Expensive
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Amortized inference

max
𝜃

1

𝑚


𝒙∈𝑫

log 𝑝𝜃(𝒙) ≥ max
𝜃,𝜑1,…,𝜑𝑚

1

𝑚


𝒙𝑖∈𝑫

L 𝒙𝑖; 𝜃, 𝜑

 Where L 𝒙𝑖 ; 𝜃, 𝜑 = 𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖 , 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

VI uses 𝜑𝑖 for each point xi.

May not scale well with large datasets; prone to overfitting

Amortization: we learn a single neural network 𝑓𝑤: 𝒙 ⟼ 𝜑 that 

maps each input x to a set of (good) variational parameters

 𝑓𝑤 has a trainable parameter w

 For a given input xi, 𝑓𝑤 will produce the parameter 𝜑𝑖 = 𝑓𝑤(𝒙𝑖) of the 

variational distribution 𝑞𝜑𝑖
𝒛

Amortized inference: feed instance x to the trained network to 

get the variational parameter 𝜑 = 𝑓𝑤(𝒙)

No optimization ➔ cheap Kingma, D. P. & Welling, M. (2014). 
Auto-Encoding Variational Bayes. ICLR.
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Learning with amortized inference

We can use using stochastic gradient descent to solve 

max
𝜃,𝜑1,…,𝜑𝑚



𝒙𝑖∈𝑫

L 𝒙𝑖; 𝜃, 𝜑

 Initialize 𝜃 0 , 𝜑(0)

At iteration 𝑗 ≥ 1:

 Randomly sample a data point xi from D

Compute 𝛻𝜃𝐿 𝒙𝑖; 𝜃 𝑗−1 , 𝜑(𝑗−1)  and 𝛻𝜑𝐿 𝒙𝑖; 𝜃 𝑗−1 , 𝜑(𝑗−1)

Update 𝜃 𝑗 , 𝜑(𝑗) in the gradient direction

How to compute the gradients?

 L 𝒙𝑖; 𝜃, 𝜑 = 𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖, 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

 The expectation complicates gradient computation for 𝜑



40
Reparameterization trick

Consider z being continuous, and we want to compute a gradient 

with respect to 𝜑 of

𝔼𝑞𝜑 𝒛 𝑟 𝒛 = න 𝑞𝜑 𝒛 𝑟 𝒛 𝑑𝒛

 Suppose 𝑞𝜑 𝒛 = 𝒩(𝝁, 𝜎2𝑰) is Gaussian with parameters 𝜑 = (𝝁, 𝜎)

 Since 𝒛~𝑞𝜑 𝒛 , there exists representation 𝒛 = 𝝁 + 𝜎𝝐 where 𝝐~𝒩(0, 𝑰)

We can write

𝔼𝒛~𝑞𝜑 𝒛 𝑟 𝒛 = 𝔼𝝐~𝒩 (0,𝑰) 𝑟 𝝁 + 𝜎𝝐

𝛻𝜑𝔼𝑞𝜑 𝒛 𝑟 𝒛 = 𝛻𝜑𝔼𝝐 𝑟 𝝁 + 𝜎𝝐 = 𝔼𝝐 𝛻𝜑𝑟 𝝁 + 𝜎𝝐

Easy to estimate via Monte Carlo if r is differentiable w.r.t. 𝜑, 

since 𝝐 is easy to sample 

 𝔼𝝐 𝛻𝜑𝑟 𝝁 + 𝜎𝝐  ≈
1

𝐾
σ𝑗=1

𝐾 𝛻𝜑𝑟 𝝁 + 𝜎𝝐𝑗 , where 𝝐1, … , 𝝐𝐾~𝒩(0, 𝑰)
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Variational auto-encoder (VAE)

Since 𝑞𝜑 𝒛 approximates the posterior 𝑝𝜃 𝒛 𝒙 , we can write it as 

𝑞𝜑 𝒛|𝒙 and 

L 𝒙; 𝜃, 𝜑 = 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜃 − 𝔼𝑞𝜑 𝒛|𝒙 log 𝑞𝜑 𝒛|𝒙

= 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜃 − log 𝑝𝜃 𝒛 + log 𝑝𝜃 𝒛 − log 𝑞𝜑 𝒛|𝒙

= 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙 𝒛 − 𝐾𝐿(𝑞𝜑 𝒛|𝒙 ||𝑝𝜃 𝒛 )

Maximize L: maximize 𝑝𝜃 𝒙 𝒛 and push 𝑞𝜑 𝒛|𝒙 close to 𝑝𝜃 𝒛

Encoder: 

Maps each data point 𝒙 to a latent vector ො𝒛, a sample from a Gaussian 

(𝑞𝜑 𝒛|𝒙 ) with parameter 𝜇, 𝜎 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝜑(𝒙)

Decoder: 

 Reconstruct ෝ𝒙 from a latent vector ො𝒛, i.e., pick a sample from a 

Gaussian (𝑝𝜃 𝒙 ො𝒛 ) with parameter 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝜃(ො𝒛)

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR.
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VAE

L 𝒙; 𝜃, 𝜑 = 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙 𝒛 − 𝐾𝐿(𝑞𝜑 𝒛|𝒙  ||𝑝𝜃 𝒛 )

Maximizing L: 

 The first term encourages accurate reconstruction ෝ𝒙 ≈ 𝒙

 The KL term encourages ො𝒛 to have a distribution similar to the prior 𝑝𝜃 𝒛

Training: SGD + reparameterization trick 

Image from 

Stefano Ermon 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝜃𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝜑
ො𝒛𝒙 ෝ𝒙

𝑞𝜑 𝒛|𝒙 𝑝𝜃 𝒙 𝒛𝑝𝜃(𝒙)
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VAE: some properties

Pros:

 Efficient inference

 Flexible and expressive (Universal approximator)

Good diversity of the synthetic samples

Cons:

 Blur images VAE (2014)

VQ-VAE (2017)



Generative 

Adversarial Networks
Introduction

44

(Adapted from a lecture by Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan, UC Berkeley, 2020)



45Generative Adversarial Networks

min
𝐺

max
𝐷

𝔼𝒙~𝑝𝑑𝑎𝑡𝑎
log 𝐷 𝒙 + 𝔼𝒛~𝑝 𝒛 log 1 − 𝐷 𝐺 𝒛

❑ Two player minimax game between generator (G) and discriminator (D)

❑ D tries to maximize the log-likehood for the binary classification 

problem (D cố gắng cực đại hoá hàm log-likehood của bài toán phân loại nhị phân)

❖ Data: real (1)

❖ Generated: fake (0)

❑ G tries to minimize the log-probability of its samples being classified as 

“fake” by the discriminator D

(G cố gắng cực tiểu hoá xác suất để D phân loại chính xác các mẫu dữ liệu do G tạo ra)



46Generative Adversarial Networks

Figure from NeurIPS 2016 

GAN Tutorial (Goodfellow)



47Representation for the players

❑ D and G can be represented as two neural networks

❑ Discriminator:

𝐷 𝒙 = 𝑁𝑁(𝒙; 𝜃𝑑)

❖ 𝜃𝑑 is the weight of the neural network which takes a sample x as input.

❖ Output is a value in [0, 1].

(biểu diễn D bằng một mạng nơron với trọng số 𝜃𝑑, với  đầu vào x thì trả về 

một giá trị thuộc [0, 1])

❑ Generator:

𝐺 𝒛 = 𝑁𝑁(𝒛; 𝜃𝑔)

❖ 𝜃𝑔 is the weight of the neural network which takes a noise z as input.

❖ z often follows a simple distribution, and is of low dimensionality.

❖ Output is a fake sample 𝒙 = 𝐺 𝒛 .
(biểu diễn G bằng một mạng nơron với trọng số 𝜃𝑔, với  đầu vào z thì trả về 

một mẫu dữ liệu x)



48GANs: pseudocode for training

[Goodfellow et al., NeurIPS 2014]

D

G



49GAN

❑ See it in action: http://poloclub.github.io/ganlab/

http://poloclub.github.io/ganlab/


50GAN samples from 2014

Figure from [Goodfellow et al., NeurIPS 2014]



51Generative Adversarial Networks

❑ Key pieces of GAN

❖ Fast sampling

❖ No inference

❖ Notion of optimizing directly for what you care about 

– perceptual samples



52GAN: Bayes optimal discriminator

❑ What’s the optimal discriminator given generated and true distributions?

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log 𝐷 𝑥 + 𝔼𝑧~𝑝 𝑧 log 1 − 𝐷 𝐺 𝑧

             = ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 𝑑𝑥 + ∫
𝑧

 𝑝 𝑧 log 1 − 𝐷 𝐺 𝑧 𝑑𝑧

                       =  ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 𝑑𝑥 + ∫
𝑥

 𝑝𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

                       = ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 +  𝑝𝑔 𝑥 log 1 − 𝐷 𝑥  𝑑𝑥   

 ∇𝑦 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 = 0 ⟹ 𝑦∗ =
𝑎

𝑎 + 𝑏
 ∀ (𝑎, 𝑏)  ∈  ℝ2\(0,0)

    ⟹ 𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  +𝑝𝑔 𝑥



53GAN: Bayes optimal discriminator

[Figure Source: Goodfellow 

NeurIPS 2016 Tutorial on GANs]

Discriminator
Data distribution

Model / 
Generator 
distribution
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Generator Objective under Optimal Discriminator

𝑉 𝐺, 𝐷∗ = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log 𝐷∗ 𝑥 + 𝔼𝑧~𝑝𝑔

log 1 − 𝐷∗ 𝑥  

            = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  + 𝑝𝑔 𝑥
 +𝔼𝑧~𝑝𝑔

log
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  + 𝑝𝑔 𝑥

            = − log 4 + 𝐾𝐿 𝑝𝑑𝑎𝑡𝑎 ∥
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
+ 𝐾𝐿 𝑝𝑔 ∥

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2

Jensen−Shannon Divergence JSD  of 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔  ≥ 0

 (𝐾𝐿(p||q) is the  Kullback-Leibler divergence between p and q)

𝑉 𝐺∗, 𝐷∗ = − log 4  when 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

❑ Given the Bayes-optimal D*, solving for G is equivalent to minimizing the 

JSD divergence between pdata and pg



55Behaviors across divergence measures

[“A note on the evaluation of generative models”  -- Theis, Van den Oord, Bethge 2015]



56KL and JSD

For given 𝑝(𝑥), find 𝑞∗(𝑥) that minimizes the divergence between them
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Mode covering vs Mode seeking: Tradeoffs

❑ For compression, one would prefer to ensure all points in the data 

distribution are assigned probability mass. 

❑ For generating good samples, blurring across modes spoils 

perceptual quality because regions outside the data manifold are 

assigned non-zero probability mass. 

❑ Picking one mode without assigning probability mass on points 

outside can produce “better-looking” samples. 

❑ Caveat: More expressive density models can place probability mass 

more accurately. 



58Mode Collapse

Standard GAN training collapses when the true distribution is a 

mixture of gaussians (Figure from Metz et al 2016) 
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More?

 Diffusion models

 …

Xiao, Z., Kreis, K., & Vahdat, A. Tackling the Generative 
Learning Trilemma with Denoising Diffusion GANs. In ICLR, 2022.



Thank you
Contact: 

khoattq@soict.hust.edu.vn
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