Introduction to

(MO hinh tao sinh sau)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

SolCT summer school, August 2024

Contents

= Infroduction

= Probabilistic models
= Generative models
= Variational auto-encoder

= Generative Adversarial Networks

Some successes: Text-to-image (2022)

= Draw pictures by descriptions

R T

- A\"_ 3 "
—

-
~

DALL-E 2

A bowl of soup

s 2
%

Imagen

An extremely angry bird. A cute corgi lives in a house made out of

GO 816 Imqgen sushi.

Some successes: ChatGPT (2022)

=Human-level Chatting, Writing, QA,...

L

B GENERATED BY A.l. [¥

SO trdi dep qua, lam cho t&bai tha di

Tam bidt M Why ChatGPT is
Trisi dep mési 1 about to change
Stfc manh ctia mua how you work'
Veé deR

like it or not?

o
= @WBUS'NESS Audio Live TV

ChatGPT passes exams from law and business
schools

Lap lanh tran da

Khéng can b3

By Samantha Murphy Kelly, CNN Business
Updated 1:35 PM EST, Thu January 26, 2023

@ OpenAl

Some successes: more

@OpenAI
INTRODUCING

©® SORA - Text ToVideo

Generative Models

Q

Q

Q

Q

Q

Q

Probabilistic models of data

Sample: l1ay mau di¥ liéu (sinh/tao ra di liéu)

Evaluate likelihood: tinh likelihood ctia dir liéu cho truwéc

Train: huan luyén

Representation: biéu dién mai

What if all we care about is sampling?

< Not in the training data, but the novel samples.

Probabillistic models
Infroduction

Probabillistic model

o Our assumption on how the data samples were generated
(gid thuyét cta chung ta vé qua trinh ma cac mau dir liéu da dwoc sinh

ra nhw thé ndo)

o Example: how a sentence is generated?

% We assume our brain does as follow:

< First choose the topic of the sentence
< Generate the words one-by-one to form the sentence

| ? N PR e
o How will TIM be drawn {/ ™ | k\\ / KU) 1 1
@ _ _;l_,_, N O\
Ok

drawinghowtodraw.com

Probabillistic model

o A model sometimes consists of

< Observed variable (e.g., x) which models

the observation (data instance)

(bién quan sat duwoc) @f =®
% Hidden variable which describes the

hidden things (e.g., z, ¢)
(bién an)

% Relations between the variables

o Each variable follows some probability distribution
(méi bién tuan theo mot phan b xac suat nao do)

Different types of models

= Probabilistic graphical model (PGM): Graph + Probability Theory
(mé hinh d6 thi xac suat)

o Each vertex represents a random variable,
grey circle means “observed’,
white circle means “latent” @/ =®

o Each edge represents the conditional
dependence between two variables

= | atent variable model: a PGM which has at least one latent variable

= Generative model: a model that enables us to generate data instances

Univariate normal distribution

= We wish to know the average height of a person

o We had collected a dataset from 10 people in Hanoi:
D={1.6,1.7,1.65,163,1.75,1.71, 1.68, 1.72, 1.77, 1.62}

Let x denote the random variable that represents the height of a person

= Assumption: x follows a Normal distribution (Gaussian) with the following
probability density function (PDF)

104

1
N (xlp, 02) = ——— e 202> W |

e 202
V2mo? |
o where {u, 0%} are the mean and variance 41
= Note:

n N (x|u,o?) represents the class of normal distributions

o This class is parameterized by 8 = (u,0?)

= Learning: we need to know specific values of {u, 0%} @ @

PGM: some well-known models

= Gaussian mixture model (GMM)
o Modeling real-valued data
= Latent Dirichlet allocation (LDA)
o Modeling the topics hidden in textual data
= Hidden Markov model (HMM)
o Modeling time-series, i.e., data with time stamps or sequential nature
= Conditional Random Field (CRF)
o for structured prediction
= Deep generative models

o Modeling the hidden structures, generating artificial data

Probabillistic model: inference & learning H

o Inference for a given instance x,,
(Suy dién/phan doan dbi véi modt quan sat cho truée)

+ Recovery of the local variable (e.g., z,,), or e @

< The distribution of the local variables

(€.9., P(znl¢, 7))
<+ Example: for GMM, we want to know z, @/ =@

indicating which Gaussian did generate x,, N

o Learning (estimation)
(Hoc/wéc lwong mé hinh)
< Given a training dataset, estimate the joint distribution of the variables
« E.g., estimate the density function p(¢, z4, ..., Z,, X1, ..., X | @)
« E.g., estimate P(xq, ..., x,|a)
<+ E.g., estimate «a
» Inference of local variables is often needed

Generative model: sampling

o Sampling data

< Make novel data samples, given a trained model
(tao ra di¥ lieu moi tir moé hinh da co)

Generator
Random nOise Deconvolutional Network (DN)
4 aid /

o/o\

N R

~ /O\ ——l

/O\- ~

\o/o\

‘“o/ Generated faces

o Application:
< Entertainment (nganh gidi tri): videos, images, musics,
» Limited resources: khi kha nang thu thap dwoc it mau dir liéu
<+ Fashion: tao mau quan/ao thoi trang
» Design: tao mau trang thiét bi ma&i
<+ Materials: tao cac vat liéu moi

Generative models
Learning

Learning a generative model

= Given a fraining set of examples, e.g., images of dogs
= We want to learn a probability distribution P(x) over images x
such that

+» Generation: If we sample x,,, ~ P(x), x,,, Should look like a dog
(sampling)
« Density estimation: P(x)

+ Unsupervised representation learning: We should be able to learn what
these images have in common, e.g., ears, tail, etc. (features)

0.14 | . [Sampled Data
\ --- PDF .

-
==.
S~
-y

-
=1

-10 -5 0 5 10

The sampling distribution

uDataset D = {X;, X5, ..., X;,}

" Hardness of the learning problem:
= P(x)

Impossible

in the space of all probability distributions

" |n practice, we often find a Py(x) to approximate P(x)

[Sampled Data
--=- PDF

=~
————

10

Hypothesis space n
P

= Ussually, we can choose a restricted set H of distributions
® Parameterized by 6 € ©

® A learner must find one Py € H

= Hypothesis space (model family):
a set H of distributions, providing candidates for a learner
® Represents prior knowledge about a task
m Represents our inductive bias or preference

" Each Py is often called a “model”

= Gaussian family:
H = {Pg: Py is the normal distribution with 8 = (u,0),u € R,0 € R, }

Learning goal

" Find a model Py that precisely captures the distribution P from
which our data was sampled

® [nfractability:
® P(x) is in the space of all probability distributions
m The sampled data set is limited
m Computational reasons

= We want to select P4 to be the "best” approximation to the
underlying distribution P
= What is “best”?

® Depends on specific task of interest

Learning as density estimation

= We want to learn the full distribution so that later we can answer
any probabilistic inference query

= |n this setting we can view the learning problem as density
estimation

= We want to construct Py as "close” as possible to P
(recall we assume we are giver/a dataset D of samples from P)

How do we

evaluate
N "closeness”?

[
-

KL-divergence

= How should we measure distance between distributions?

= The Kullback-Leibler divergence (KL-divergence) between two
distributions P and Q is defined as

KL(P||Q) = Ex~px) (logzgg)
= where p(x) and q(x) represents the densities of P and Q, respectively
= Note that:
= KL(P||Q) = 0 for any P and Q, and KL(P||P) = 0
" KL(PIlQ) # KL(Q|IP)
" [f measures the loss (in bits) when describing distribution P by Q.

Learning: a revisit

= We want to construct Py as "close” as possible to P
(Given a dataset D of samples from P)

u Closeness by KL:

P
p(x)> ’
KL(P||Pg) = E,- lo .
(P||Pg) = E, P(x)(ron
» Learning by minimizing KL(P||Pg)

0* = argmin KL(P||Pg)
6€0

= Find the parameter 8* that minimizes KL(P||Pg)

m §* provides the minimal loss when compressing P by Py-

Expected log-likelihood

= We can rewrite

p(x)
pe (x)
= The first term does not depend on 6

KL(P||Pg) = Ex-p(x) (log) = Ex~p(x)(l0g p(x)) — Ex px)(log pg(x))

® Minimizing KL is equivalent to maximizing the Expected log-
likelihood Ey.p(x)(log pg(x))

= earning can be done by Maximum Likelihood Estimation (MLE)

6" = argmax Ey._p(y) (log pg (x))
6eo

® |n general, we do not know P

® SO, we cannot access to the objective

Maximum likelihood

= We approximate the expected log-likelihood Ey.p)(logpe(x)) by

1
Exep(logpe(x)) = EE log pg(x)
XED

® Sometimes known as Empirical log-likelihood
(note the similarity with empirical loss in ML)

= MLE is the formulated as

0" = argmax—Zlogpg(x)
fe@ M

= This is equivalent to maximizing the likelihood P(xy, ..., xp) = [1i2, P(x;) for

I.i.d. samples

MLE: Gaussian example (1)

= We wish to estimate the height of a person in the world.
=" Use adataset D ={1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}

o Let x be the random variable representing the height of a person.

o Model: assume that x follows a Gaussian distribution with unknown mean u
and variance g2

o Learning: estimate (u, o) from the given data D = {x4, ..., x10}.

" Let f(x|u,0) be the density function of the Gaussian family,
parameterized by (u, o).

o f(xn|u, 0) is the likelihood of instance x,,.

o f(D|u, o) is the likelihood function of D. d

= Using MLE, we will find
(4., 0.) = arg max f(D|u, o)

o
!

1.60 1.65 1.70 1.75 1.80

o As a result, we have P(D|u,) = P(xy, ..., x10ltt,) = [1:2, P(x;|, 0)

MLE: Gaussian example (2)

=|.I.d assumption: we assume that the data are independent and
Identically distributed (dix lisu dwoc sinh ra mét cach doc lap)

= Using this assumption, MLE will be

10
(u,, o,) = arg max f (x;lu, 0) = arg max 1_[
i= H,o 1
i=1

5 (xi—1)?
= arg max log 1_[e 202 Log trick,
V2mo* log & In

10

1
= arg maxz <_F(xi —w)? —log \/27102)

TR.
=1

10
1

2102

= Using gradients (w.r.t u, o), we can find

1 10) _ 10 i
« =0 . = 1.683, b z —u,)* =~ 0.0015

Generative models

Approximation by
mixture models

Learning the data distribution

= Dataset D = {X;, X,, ..., X;,}
+ Images about dogs

= Hardness of the learning |
problem:

« P(x) is in the space of all
probability distributions

" |n practice, we often find a
Pg(x) to approximate P(x)

= How to choose a good model
familye

« Gaussian family?
=> too simple

Gaussian mixture model (GMM)

o GMM: we assume that the data are samples from K Gaussian
distributions.

o Eachinstance x is generated from one of those K Gaussians by the
following generative process:

« Take the component index z ~ Categorical(¢) 801 -
<« Generate x ~ Normal(u,, X,) 60
o The density function is
K 201

Q(xlﬂ,2,¢) = Zd)kN(xl”kizk) 0q - | | | | | | | |

k=1 155 160 165 170 175 180 1.85 190 1.95

o ¢ = (¢4, ..., Px) represents the weights of the Gaussians: Y5, ¢ =1, ¢; =0, Vj

n Each Gaussian has density M(x |u, X) = mexp [—é (x—pwT2 1(x - u)]

= Note: zis an unobserved (latent) variable, x is observable

GMM: approximation ability

=The density q(x|u, Z,) = Xi—1 N (x| pye, Z)

® Gaussian model: K = 1 component

= A larger K produces a more complex model Q

160
— GMM — GMM-3

80 1 140 -

120 A

60 1 100

80
40 A
60 1
20 - 40 1
20 A

01 0 1

155 160 165 170 175 180 1.85 190 1.95 155 160 165 170 175 180 1.85 190 1.95

GMM with 2 components GMM with 3 components

= GMMs are universal approximators

® Any smooth density can be approximated arbitrarily well by a GMM
with enough components

Dalal, S. R., and W. J. Hall. "Approximating Priors by Mixtures of Natural Conjugate Priors." J.
of the Royal Statistical Society. Series B (Methodological), val. 45, no. 2, 1983, pp. 278-286.

Infinite GMM

a Mixture of an infinite number of Gaussians: we assume that the
data are samples from an infinite number of Gaussians

o Eachinstance x is generated from one of those Gaussians by the
following generative process:

<« Choose z ~ Normal(0,1) P(z)

» Generate x ~ Normal(ug(z), £¢(2)) P(x|z)

<+ Where ug, Xy are neural networks, parameterized by 6

= Universal approximator?

®" Each component is simple, but the marginal P(x) is very complex

Variational auto-encoder

Variational inference,
Amortized inference,
Sampling

Learning for GMM

" Learning by MLE:

0" = argmax — z log pg (x)

x€ED

= where pg(x) = YX_; gbkmexp l—z(x —)T 2 (x - ﬂk)], 0=(ppnl)

= Evaluation of log pg (x) is hard in general, since

ogpp()=log > ppx2)

All possible values of z

= E.g., for z € {0,1}199, the sum has 21 terms

" [t is even harder for more complex models

=2 Approximation is needed

Evidence Lower Bound

= Note

log pg(x) = 1ogz po(x,z) = logz %Pe (x,z) = logEy (5 Pil((xz,)Z)

ZEZ ZEZ
=Since log is concave, Jensen Inequality suggests

po (X, Z) po(x, z)

logE, () ———=E, ,lo = E,»lo x,z) —E,logqg(z)
8B =7 a(z) 108 =7 q(z)108Pe(x,2) — Eg(5) logq

= This is called the Evidence Lower Bound (ELBO)

= For any q(z)
logpg(x) = ELBO
® For ELBO = E(;) logpg(x,z) — E4(5) log q(2)
"When q(z) = py(z|x):
log pg(x|0) = Ep, (z1x) log pe(x, 2|0) — E,, (2 log pe(z|x) = ELBO

Variational inference

= When the posterior pg(z|x) is easy to compute, we can learn the
model by maximizing

1 1

xeD xeD
m E.g., for the case of GMM

= What if the posterior pg(z|x) is infractable to compute?

= Variational inference (VI):

= choose a family of simple distributions q,(z),] o
parameterized by ¢ (variafional parameters) | -

= then find ¢* so that q,+(2) is as close as
possible to py(z|x)

4o

155 160 165 170 175 180 1.85 190 1.95

VI and KL

= Maximize the ELBO

m
1
m z [Eqm(z) log pg(x;,2|0) — IEq‘Pi(Z) log 4y, (Z)]

i=1
® given a fraining set D = {X;, Xy, ..., Xy}

= Maximizing ELBO is equivalent to Minimizing KL, due to
log pg(x) = ELBO + KL(q,(2)||pe(z|x))

= Jointly optimize over

"9, .., 0, (Variational parameters)

® § (model parameters)

VI]: some properties

= Pros:
® Easy to be used in a large class of models
m Efficient in practice

=Cons:

® Hard to choose a good variational family

= Variational inference (VI):
® choose a family of simple
distributions g, (2).
parameterized by ¢
= find ¢* so that q,+(2) is as
close as possible to pg(z|x)

= When we do not know the explicit form for the posterior pg(z|x)

m For inference, given model param 8 and instance x, we estimate the

posterior pg(z|x) by solving an optimization problem:

mq:;lx Eq,(2)108 po(x,2|0) — Eq,(2) l0g q,(2)

m Require too many variational parameters

= Each instance x; requires one specific ¢; = O(m) parameters

= GMM needs O(mKn2) params, where K is #components, n is #dims

Amortized inference

1
— > —
max E logpg(x) = 6 r?ax E L(x;; 0, @)
x€D x;€D

= Where L(x;; 6, 9) = Eq, (5 logpe(x;,2]0) — Eq,, (5 log q,,(2)
= V| uses @; for each point x.
= May not scale well with large datasets; prone to overfitting

= Amortization: we learn a single neural network f,,: x — ¢ that
maps each input x to a set of (good) variational parameters
m . has a frainable parameter w
= For a given input x;, f,, Will produce the parameter ¢; = f,,(x;) of the
variational distribution g, (z)
" Amortized inference: feed instance x to the trained network to
get the variational parameter ¢ = f,,(x)

= NO optimization = cheap Kingma, D. P. & Welling, M. (2014).
Auto-Encoding Variational Bayes. ICLR.

Learning with amortized inference

» We can use using stochastic gradient descent to solve

max " L(x;0,)

0,01,...¢
! m x;€D

= |nitialize 6(®, p©

= At iteratfion j = 1:
® Randomly sample a data point x; from D
= Compute VyL(x; 897V, pU=D) and V,L(x;0V~, oU~D)
= Update 89,0 in the gradient direction

=" How to compute the gradients?

" L(x;0,0) = IEq(pl_(Z) log pg(x;,2|0) — IEq(pi(Z) log q,,(2)

® The expectation complicates gradient computation for ¢

Reparameterization frick

= Consider z being continuous, and we want fo compute a gradient
with respect to ¢ of

Bayolr@)] = [ap@r(2)dz

= Suppose q,(z) = N (u, o*I) is Gaussian with parameters ¢ = (u, 0)
= Since z~q,(2z), there exists representation z = u + oe where e~ (0,1)
= We can write
Ez~q,(2) [7(2)] = Ecpv o, lr(n + g€)]
VoEq, (o r(@)] = VpE[r(p + 0€)] = E[V,r(p + ge)]

= Easy to estimate via Monte Carlo if ris differentiable w.r.t. ¢,
since € is easy to sample

7 IEG[V(pr(u -+ ae)] ~ %Zﬁle V(pr(u + aej), where €4, ..., eg~N(0,1)

Variational auto-encoder (VAE)

=Since q,(z) approximates the posterior py(z|x), we can write it as
q,(z]x) and

L(x;0,9) = Eq,,(zx) 108 Po (%, 2|0) — Eq (zx) l0g G, (2]X)
= Eq,, (210|108 P (x, 2|6) — log pg (2) + log ps(2) — log q, (2| x)]
= Eq,,(zix 108 g (x]2)] — KL(q,(2|x) ||pe(2))
= Maximize L: maximize pg(x|z) and push g, (z|x) close to pg(z)
" Encoder:

® Maps each data point x to a latent vector z, a sample from a Gaussian
(q,(z|x)) with parameter (u, o) = Encoder,(x)

= Decoder:

m Reconstruct ¥ from a latent vector z, i.e., pick a sample from a
Gaussian (pg(x]2)) with parameter Decodery(2)

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR.

VAE

L(x; 6, 9) = Eq (210 [log pe(x]2)] = KL(qy(2|2x) ||pe(2))
= Maximizing L:
= The first term encourages accurate reconstruction ¥ = x
= The KL term encourages z to have a distribution similar to the prior pg(z)

= Training: SGD + reparameterization trick

Dog
Running

Alice Frishee Bob

Grass

Image from
Stefano Ermon

Encoder, Decodery

pe(x) q,(z|x) po(x|2)

VAE: some properties

T2OL,P22298
: 1959911714194
" Pros: §962832929
= Efficient inference 134861 /70867
: : : , 5917999 (06
= Flexible and expressive (Universal approximator) ¢ pz¢ 9 & 8 2 § 7
m Good diversity of the synthetic samples 15972 ¢6173 464
1739727350
=Cons: 152455904154
: 287282 L,2Z22%d
= Blur images VAE (2014)
q" = argmin, Dk (pllq)
— p(z)
— (@)

Probability Density

Maximum likelihood VQ-VAE (2017)

Generative

Adversarial Networks
Infroduction

(Adapted from a lecture by Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan, UC Berkeley, 2020)

Generative Adversarial Networks

minmax Ex_p,,, llog D(x)] + E,-p(2) [log (1 - D(G(Z)))]

o Two player minimax game between generator (G) and discriminator (D)

o D tries to maximize the log-likehood for the binary classification
problem (D ¢d gang cwc dai hoa ham log-likehood cuia bai toan phan loai nhj phan)
+« Data: real (1)
+ Generated: fake (0)

o G tries to minimize the log-probability of its samples being classified as

“fake” by the discriminator D
(G ¢b gang cuc tiéu hoa xac suat dé D phan loai chinh xac cac mau div liéu do G tao ra)

Generative Adversarial Networks

D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
leferentlable
function D
x sampled from z sampled from
data model
Differentlable
function G

t

Input noise z
Figure from NeurlPS 2016

GAN Tutorial (Goodfellow)

Representation for the players

o D and G can be represented as two neural networks
o Discriminator:
D(x) = NN(x;0,)
+ B4 is the weight of the neural network which takes a sample x as input.
= Output |~s a valpe in [0, 1]. , ‘ ‘
(biéu dién D bang mét mang noron v&i trong so 6,4, v&i dau vao x thi tra vé
mot gia tri thudc [0, 1])
o Generator:
G(z) = NN(z;0,)
= 64 Is the weight of the neural network which takes a noise z as input.
+ z often follows a simple distribution, and is of low dimensionality.

= Output is a fake sample x = G(z). , ‘ ‘
(bieu dién G bang mét mang noron vai trong so 6,4, v&i dau vao z thi tra vé

m&t mau div liéu x)

GANSs: pseudocode for fraining

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do
e Sample minibatch of m noise samples {21, ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(!),...,2(™)} from data generating distribution

Pdata().
e Update the discriminator by ascending its stochastic gradient: D

Vo2 3" [iogD (=) +10g (1- b (¢ (=)))].

end for —
e Sample minibatch of m noise samples {z(), ..., z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

9o, 3108 (1-0 (6 (=)).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

[Goodfellow et al., NeurlPS 2014]

GAN

o See it in action: http://poloclub.github.io/ganlab/

Data Distribution

GAN Lab .

[Use pre-trained model

MODEL OVERVIEW GRAPH #*

Fake

Feg
% g

Samples

e e e e e e : = ————

Gradients

Gradients

o D EEEmEmEmEmEmm————— ~
| |
| |
| I
| I
| I
| I
| I
| I
| Real 1
I_l_’m ° 1
[|

A |

\ | Discriminator

\ I loss

>—7
I Fake ,,/
Z
' A
Discriminator Prediction of I gnerator

Samples | loss
I
|
|
|
|
|
|
|
/

Epoch

010,131

LAYERED DISTRIBUTIONS

Samples in green regions are likely to be real; those in purple regions likely fake.

http://poloclub.github.io/ganlab/

GAN samples from 2014

Figure from [Goodfellow et al., NeurIPS 2014]

Generative Adversarial Networks

o Key pieces of GAN
+ Fast sampling
+ No inference

+ Notion of optimizing directly for what you care about
— perceptual samples

GAN: Bayes optimal discriminator

0 What's the optimal discriminator given generated and true distributions?
V(G,D) = Ey_p,., [10gD()] + Espis) [log (1 — D(G(z)))]
= [, Paata(®) 1og D(x) dx + [, p(2) log (1 - D(G(2))) dz
= [, Paata(x)1og D(x) dx + [, py(x) log(1 — D(x)) dx

= fx[pdata(x) log D(x) + py(x) log(1—D(x))] dx

Vy[alogy +blog(l—y)|=0 = y* = a;:b V (a,b) € R?\(0,0)

* . Pdata(X)
= D"(x) = Paata(x) +pg(x)

GAN: Bayes optimal discriminator

/ Mod;I/

Generator
distribution

Z [Figure Source: Goodfellow
NeurlPS 2016 Tutorial on GANS]

Generator Objective under Optimal Discriminator H

V(G,D*) = Eyep,,,,llog D*(0)] + E,-;, [log(1 — D*(x))]

Pdata(X)
Pdata(x) + pg(x)

[og Pdata(X)
*~Pdata Paata(®) + g(x)

=E +IEZ~pg llog

a a+ a a+
—log(4) + KL (pdata I pdt—ng) + KL (pg I pdt—ng)

v

(Jensen—Shannon Divergence (JSD) of pgqtq and pg) = 0

(KL(p||q) is the Kullback-Leibler divergence between pand q)

V(G*,D*) = —log(4) when py = pgata

0 Given the Bayes-optimal D*, solving for G is equivalent to minimizing the

JSD divergence between Py, and pg

Behaviors across divergence measures

KLD MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or

Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.

[“A note on the evaluation of generative models” -- Theis, Van den Oord, Bethge 2015]

KL and JSD

Behavior of Different Divergences
Forward KL Reverse KL

—
(=g

= pix]
=== q"(x)

el el
L N N

Probability Density
=T~ |
[=4] oa

w—

o=y
Frobability Density
Probability Density

L=
Fed

=
Lo

For given p(x), find g*(x) that minimizes the divergence between them

Mode covering vs Mode seeking: Tradeoffs

2 For compression, one would prefer to ensure all points in the data

distribution are assigned probability mass.

- For generating good samples, blurring across modes spoils
perceptual quality because regions outside the data manifold are

assigned non-zero probability mass.

2 Picking one mode without assigning probability mass on points

outside can produce “better-looking” samples.

o Caveat: More expressive density models can place probability mass

more accurately.

Mode Collapse

Step 0 Step S5k Step 10k Step 15k Step 20k Step 25k Target

Standard GAN training collapses when the true distribution is a
mixture of gaussians (Figure from Metz et al 2016)

More@e

= Diffusion models

Generative Denoising
Adversarial , "y Diffusion
Networks/.- *\ Models

Mode
Coverage /

Fast

\
Sampling /

Variational Autoencoders,
Normalizing Flows

Xiao, Z., Kreis, K., & Vahdat, A. Tackling the Generative
Learning Trilemma with Denoising Diffusion GANSs. In ICLR, 2022.

Thank you

Contact:
khoattg@soict.hust.edu.vn

	Slide 1: Introduction to Deep Generative Models (Mô hình tạo sinh sâu)
	Slide 2: Contents
	Slide 3: Some successes: Text-to-image (2022)
	Slide 4: Some successes: ChatGPT (2022)
	Slide 5: Some successes: more
	Slide 6: Generative Models
	Slide 7: Probabilistic models
	Slide 8: Probabilistic model
	Slide 9: Probabilistic model
	Slide 10: Different types of models
	Slide 11: Univariate normal distribution
	Slide 12: PGM: some well-known models
	Slide 13: Probabilistic model: inference & learning
	Slide 14: Generative model: sampling
	Slide 15: Generative models
	Slide 16: Learning a generative model
	Slide 17: The sampling distribution
	Slide 18: Hypothesis space
	Slide 19: Learning goal
	Slide 20: Learning as density estimation
	Slide 21: KL-divergence
	Slide 22: Learning: a revisit
	Slide 23: Expected log-likelihood
	Slide 24: Maximum likelihood
	Slide 25: MLE: Gaussian example (1)
	Slide 26: MLE: Gaussian example (2)
	Slide 27: Generative models
	Slide 28: Learning the data distribution
	Slide 29: Gaussian mixture model (GMM)
	Slide 30: GMM: approximation ability
	Slide 31: Infinite GMM
	Slide 32: Variational auto-encoder
	Slide 33: Learning for GMM
	Slide 34: Evidence Lower Bound
	Slide 35: Variational inference
	Slide 36: VI and KL
	Slide 37: VI: some properties
	Slide 38: Amortized inference
	Slide 39: Learning with amortized inference
	Slide 40: Reparameterization trick
	Slide 41: Variational auto-encoder (VAE)
	Slide 42: VAE
	Slide 43: VAE: some properties
	Slide 44: Generative Adversarial Networks
	Slide 45: Generative Adversarial Networks
	Slide 46: Generative Adversarial Networks
	Slide 47: Representation for the players
	Slide 48: GANs: pseudocode for training
	Slide 49: GAN
	Slide 50: GAN samples from 2014
	Slide 51: Generative Adversarial Networks
	Slide 52: GAN: Bayes optimal discriminator
	Slide 53: GAN: Bayes optimal discriminator
	Slide 54: Generator Objective under Optimal Discriminator
	Slide 55: Behaviors across divergence measures
	Slide 56: KL and JSD
	Slide 57: Mode covering vs Mode seeking: Tradeoffs
	Slide 58: Mode Collapse
	Slide 59: More?
	Slide 60: Thank you

