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3Some successes: Text-to-image (2022)

 Draw pictures by descriptions

A bowl of soup

Midjourney

DALL-E 2

Imagen



4Some successes: ChatGPT (2022)

Human-level Chatting, Writing, QA,…

Why ChatGPT is 
about to change 
how you work, 
like it or not?
- Forbes, 2/2023



5Some successes: more

AlphaGeometry 
≈ Olympiad-level student



6Generative Models

❑ Probabilistic models of data

❑ Sample: lấy mẫu dữ liệu (sinh/tạo ra dữ liệu)

❑ Evaluate likelihood: tính likelihood của dữ liệu cho trước

❑ Train: huấn luyện

❑ Representation: biểu diễn mới

❑ What if all we care about is sampling?

❖ Not in the training data, but the novel samples.



Probabilistic models
Introduction
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8Probabilistic model

❑ Our assumption on how the data samples were generated

(giả thuyết của chúng ta về quá trình mà các mẫu dữ liệu đã được sinh 

ra như thế nào)

❑ Example: how a sentence is generated?

❖ We assume our brain does as follow:

❖ First choose the topic of the sentence

❖ Generate the words one-by-one to form the sentence

❑ How will TIM be drawn?

1. 2. 3. 4.

5.6.7.8.

drawinghowtodraw.com



9Probabilistic model

❑ A model sometimes consists of

❖ Observed variable (e.g., 𝒙) which models 

the observation (data instance)

(biến quan sát được)

❖ Hidden variable which describes the 

hidden things (e.g., 𝑧, 𝜙)

(biến ẩn)

❖ Relations between the variables

❑ Each variable follows some probability distribution 

(mỗi biến tuân theo một phân bố xác suất nào đó)

xz

𝛼 𝜙

N



10Different types of models

 Probabilistic graphical model (PGM): Graph + Probability Theory

(mô hình đồ thị xác suất)

 Each vertex represents a random variable,

grey circle means “observed”, 

white circle means “latent”

 Each edge represents the conditional 

dependence between two variables

 Latent variable model: a PGM which has at least one latent variable

 Generative model: a model that enables us to generate data instances

xz

𝛼 𝜙

N



11Univariate normal distribution

 We wish to know the average height of a person 

 We had collected a dataset from 10 people in Hanoi: 

D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}

 Let x denote the random variable that represents the height of a person

 Assumption: x follows a Normal distribution (Gaussian) with the following 

probability density function (PDF)

       𝒩 𝑥 𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥−𝜇 2

 

 where {𝜇, 𝜎2} are the mean and variance

 Note: 

 𝒩 𝑥 𝜇, 𝜎2) represents the class of normal distributions 

 This class is parameterized by 𝜽 = (𝜇, 𝜎2)

 Learning: we need to know specific values of {𝜇, 𝜎2}

x

𝜇 𝜎2



12PGM: some well-known models

 Gaussian mixture model (GMM)

 Modeling real-valued data

 Latent Dirichlet allocation (LDA)

 Modeling the topics hidden in textual data

 Hidden Markov model (HMM)

 Modeling time-series, i.e., data with time stamps or sequential nature

 Conditional Random Field (CRF)

 for structured prediction

 Deep generative models

 Modeling the hidden structures, generating artificial data



13Probabilistic model: inference & learning

❑ Inference for a given instance 𝒙𝑛 

(Suy diễn/phán đoán đối với một quan sát cho trước)

❖ Recovery of the local variable (e.g., 𝑧𝑛), or

❖ The distribution of the local variables 

(e.g., 𝑃 𝑧𝑛 𝜙, 𝒙𝑛))

❖ Example: for GMM, we want to know 𝑧𝑛 

indicating which Gaussian did generate 𝒙𝑛 

❑ Learning (estimation)

(Học/ước lượng mô hình)

❖ Given a training dataset, estimate the joint distribution of the variables

❖ E.g., estimate the density function 𝑝 𝜙, 𝑧1, … , 𝑧𝑛, 𝒙1, … , 𝒙𝑛 𝛼)

❖ E.g., estimate 𝑃 𝒙1, … , 𝒙𝑛 𝛼)

❖ E.g., estimate 𝛼

❖ Inference of local variables is often needed

xz

𝛼 𝜙

N



14Generative model: sampling

❑ Sampling data

❖ Make novel data samples, given a trained model

(tạo ra dữ liệu mới từ mô hình đã có)

❑ Application:

❖ Entertainment (ngành giải trí): videos, images, musics, …

❖ Limited resources: khi khả năng thu thập được ít mẫu  dữ liệu

❖ Fashion: tạo mẫu quần/áo thời trang

❖ Design: tạo mẫu trang thiết bị mới

❖ Materials: tạo các vật liệu mới

❖ …



Generative models
Learning

15
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Learning a generative model

 Given a training set of examples, e.g., images of dogs

 We want to learn a probability distribution P(x) over images x

such that

❖ Generation: If we sample 𝒙𝑛𝑒𝑤 ∼ 𝑃(𝒙), 𝒙𝑛𝑒𝑤 should look like a dog 

(sampling)

❖ Density estimation: P(x)

❖ Unsupervised representation learning: We should be able to learn what 

these images have in common, e.g., ears, tail, etc. (features)
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The sampling distribution

Dataset D = {x1, x2, …, xm}

Hardness of the learning problem:

 P(x) in the space of all probability distributions

 In practice, we often find a 𝑃𝜃(𝒙) to approximate 𝑃(𝒙)

Impossible

𝑝𝜃
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Hypothesis space

Ussually, we can choose a restricted set ℋ of distributions

 Parameterized by 𝜃 ∈ Θ

A learner must find one 𝑃𝜃 ∈ ℋ

Hypothesis space (model family): 

a set ℋ of distributions, providing candidates for a learner

 Represents prior knowledge about a task

 Represents our inductive bias or preference

Each 𝑃𝜃 is often called a “model”

Gaussian family: 

ℋ = 𝑃𝜃: 𝑃𝜃 is the normal distribution with 𝜃 = 𝜇, 𝜎 , 𝜇 ∈ ℝ, 𝜎 ∈ ℝ+

ℋ

𝑃
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Learning goal

Find a model 𝑃𝜃 that precisely captures the distribution P from 

which our data was sampled

 Intractability:

 P(x) is in the space of all probability distributions

 The sampled data set is limited

Computational reasons

We want to select Pθ to be the ”best” approximation to the 

underlying distribution P

What is “best”?

Depends on specific task of interest

ℋ

𝑃

𝑃𝜃
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Learning as density estimation

We want to learn the full distribution so that later we can answer 

any probabilistic inference query

 In this setting we can view the learning problem as density 

estimation

We want to construct 𝑃𝜃 as ”close” as possible to P 

(recall we assume we are given a dataset D of samples from P)

How do we 

evaluate 
”closeness”?
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KL-divergence

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two 

distributions P and Q is defined as

𝐾𝐿(𝑃| 𝑄 = 𝔼𝒙~𝑃(𝒙) log
𝑝(𝒙)

𝑞(𝒙)

where p(𝒙) and q(𝒙) represents the densities of P and Q, respectively

Note that: 

 𝐾𝐿(𝑃| 𝑄 ≥ 0 for any P and Q, and 𝐾𝐿(𝑃| 𝑃 = 0

 𝐾𝐿(𝑃| 𝑄  ≠ 𝐾𝐿(𝑄| 𝑃

 It measures the loss (in bits) when describing distribution P by Q.
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Learning: a revisit

We want to construct Pθ as ”close” as possible to P 

(Given a dataset D of samples from P)

Closeness by KL:

𝐾𝐿(𝑃| 𝑃𝜃 = 𝔼𝒙~𝑃(𝒙) log
𝑝(𝒙)

𝑝𝜃(𝒙)

Learning by minimizing 𝐾𝐿(𝑃| 𝑃𝜃

𝜃∗ = argmin
𝜃∈Θ

𝐾𝐿(𝑃| 𝑃𝜃

 Find the parameter 𝜃∗ that minimizes 𝐾𝐿(𝑃| 𝑃𝜃

 𝜃∗ provides the minimal loss when compressing P by 𝑃𝜃∗

ℋ

𝑃

𝑃𝜃∗
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Expected log-likelihood

We can rewrite

𝐾𝐿(𝑃| 𝑃𝜃 = 𝔼𝒙~𝑃 𝒙 log
𝑝 𝒙

𝑝𝜃 𝒙
= 𝔼𝒙~𝑃 𝒙 log 𝑝 𝒙 − 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

 The first term does not depend on 𝜃

Minimizing 𝐾𝐿 is equivalent to maximizing the Expected log-

likelihood 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

Learning can be done by Maximum Likelihood Estimation (MLE)

𝜃∗ = argmax
𝜃∈Θ

𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙)

 In general, we do not know P

 So, we cannot access to the objective
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Maximum likelihood

We approximate the expected log-likelihood 𝔼𝒙~𝑃(𝒙) log 𝑝𝜃(𝒙) by

𝔼𝒙∈𝑫 log 𝑝𝜃(𝒙) =
1

𝑚
෍

𝒙∈𝑫

log 𝑝𝜃(𝒙)

 Sometimes known as Empirical log-likelihood

(note the similarity with empirical loss in ML)

MLE is the formulated as

𝜃∗ = argmax
𝜃∈Θ

1

𝑚
෍

𝒙∈𝑫

log 𝑝𝜃(𝒙)

 This is equivalent to maximizing the likelihood 𝑃 𝒙1, … , 𝒙𝑚 = ς𝑖=1
𝑚 𝑃 𝒙𝑖 for 

i.i.d. samples
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MLE: Gaussian example (1)

We wish to estimate the height of a person in the world. 

Use a dataset D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}

 Let x be the random variable representing the height of a person.

 Model: assume that x follows a Gaussian distribution with unknown mean 𝜇 
and variance 𝜎2

 Learning: estimate (𝜇, 𝜎) from the given data 𝑫 =  {𝑥1, … , 𝑥10}.

 Let 𝑓(𝑥|𝜇, 𝜎) be the density function of the Gaussian family, 

parameterized by (𝜇, 𝜎). 

 𝑓(𝑥𝑛|𝜇, 𝜎) is the likelihood of instance 𝑥𝑛.

 𝑓(𝑫|𝜇, 𝜎) is the likelihood function of D.

Using MLE, we will find 

𝜇∗, 𝜎∗ = arg max
𝜇,𝜎

𝑓(𝑫|𝜇, 𝜎)



MLE: Gaussian example (2)
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 i.i.d assumption: we assume that the data are independent and 

identically distributed (dữ liệu được sinh ra một cách độc lập)

 As a result, we have 𝑃 𝑫 𝜇, 𝜎 = 𝑃 𝑥1, … , 𝑥10 𝜇, 𝜎 = ς𝑖=1
10 𝑃 𝑥𝑖 𝜇, 𝜎

Using this assumption, MLE will be 

𝜇∗, 𝜎∗ = arg max
𝜇,𝜎

ෑ
𝑖=1

10

𝑓 𝑥𝑖 𝜇, 𝜎 = arg max
𝜇,𝜎

ෑ

𝑖=1

10
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥𝑖−𝜇 2

= arg max
𝜇,𝜎

log ෑ

𝑖=1

10
1

2𝜋𝜎2
𝑒

−
1

2𝜎2 𝑥𝑖−𝜇 2

= arg max
𝜇,𝜎

෍

𝑖=1

10

−
1

2𝜎2 𝑥𝑖 − 𝜇 2 − log 2𝜋𝜎2

Using gradients (w.r.t 𝜇, 𝜎), we can find

𝜇∗ =
1

10
෍

𝑖=1

10

𝑥𝑖 = 1.683, 𝜎∗
2 =

1

10
෍

𝑖=1

10

(𝑥𝑖−𝜇∗)2 ≈ 0.0015

Log trick,

log ≝ ln  



Generative models
Approximation by 

mixture models

27



28Learning the data distribution

 Dataset D = {x1, x2, …, xm}

❖ Images about dogs

 Hardness of the learning 
problem:

❖ P(x) is in the space of all 

probability distributions

 In practice, we often find a 
𝑃𝜃(𝒙) to approximate 𝑃(𝒙)

 How to choose a good model 
family?

❖ Gaussian family? 
=> too simple
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Gaussian mixture model (GMM)

❑ GMM: we assume that the data are samples from K Gaussian 

distributions. 

❑ Each instance x is generated from one of those K Gaussians by the 

following generative process:

❖ Take the component index 𝑧 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓)

❖ Generate 𝒙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙( 𝝁𝑧 , 𝜮𝑧)

❑ The density function is

𝑞(𝒙|𝝁, 𝜮, 𝝓) = ෍

𝑘=1

𝐾

𝜙𝑘𝒩 𝒙 𝝁𝑘, 𝜮𝑘)

 𝝓 = (𝜙1, … , 𝜙𝐾) represents the weights of the Gaussians: σ𝑘=1
𝐾 𝜙𝑘 = 1,  𝜙𝑗 ≥ 0, ∀𝑗

 Each Gaussian has density 𝒩 𝒙 𝝁, 𝜮) =
1

det(2𝜋𝜮)
exp −

1

2
𝒙 − 𝝁 𝑇𝜮−1 𝒙 − 𝝁

Note: z is an unobserved (latent) variable, x is observable
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GMM: approximation ability

The density 𝑞(𝒙|𝝁, 𝜮, 𝝓) = σ𝑘=1
𝐾 𝜙𝑘𝒩 𝒙 𝝁𝑘, 𝜮𝑘)

Gaussian model: 𝐾 = 1 component

A larger K produces a more complex model Q

GMMs are universal approximators

Any smooth density can be approximated arbitrarily well by a GMM 

with enough components

GMM with 2 components GMM with 3 components

Dalal, S. R., and W. J. Hall. "Approximating Priors by Mixtures of Natural Conjugate Priors." J. 

of the Royal Statistical Society. Series B (Methodological), vol. 45, no. 2, 1983, pp. 278–286.
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Infinite GMM

❑ Mixture of an infinite number of Gaussians: we assume that the 

data are samples from an infinite number of Gaussians 

❑ Each instance x is generated from one of those Gaussians by the 

following generative process:

❖ Choose 𝒛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑰)

❖ Generate 𝒙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝝁𝜃(𝒛), 𝜮𝜃(𝒛))

❖ Where 𝝁𝜃 , 𝜮𝜃 are neural networks, parameterized by 𝜃

Universal approximator?

Each component is simple, but the marginal P(x) is very complex

P(z)

P(x|z)



Variational auto-encoder
Variational inference,

Amortized inference, 
Sampling

32
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Learning for GMM

Learning by MLE:

𝜃∗ = argmax
𝜃

1

𝑚
෍

𝒙∈𝑫

log 𝑝𝜃(𝒙)

where 𝑝𝜃 𝒙 = σ𝑘=1
𝐾 𝜙𝑘

1

det(2𝜋𝜮𝑘)
exp −

1

2
𝒙 − 𝝁𝑘

𝑇𝜮𝑘
−1 𝒙 − 𝝁𝑘 , 𝜃 = (𝝓, 𝝁, 𝜮)

Evaluation of log 𝑝𝜃(𝒙) is hard in general, since

log 𝑝𝜃(𝒙) = log ෍

All possible values of 𝒛

𝑝𝜃(𝒙, 𝒛)

 E.g., for 𝒛 ∈ 0,1 100, the sum has 2100 terms

 It is even harder for more complex models

➔Approximation is needed
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Evidence Lower Bound

Note 

log 𝑝𝜃(𝒙) = log ෍

𝒛∈𝓩

𝑝𝜃(𝒙, 𝒛) = log ෍

𝒛∈𝓩

𝑞(𝒛)

𝑞(𝒛)
𝑝𝜃(𝒙, 𝒛) = log 𝔼𝑞(𝒛)

𝑝𝜃(𝒙, 𝒛)

𝑞(𝒛)

Since log is concave, Jensen Inequality suggests

log 𝔼𝑞(𝒛)

𝑝𝜃(𝒙, 𝒛)

𝑞(𝒛)
≥ 𝔼𝑞 𝒛 log

𝑝𝜃 𝒙, 𝒛

𝑞 𝒛
= 𝔼𝑞 𝒛 log 𝑝𝜃 𝒙, 𝒛 − 𝔼𝑞 𝒛 log 𝑞 𝒛

This is called the Evidence Lower Bound (ELBO)

For any 𝑞 𝒛

log 𝑝𝜃(𝒙) ≥ 𝐸𝐿𝐵𝑂

 For ELBO = 𝔼𝑞 𝒛 log 𝑝𝜃 𝒙, 𝒛 − 𝔼𝑞 𝒛 log 𝑞 𝒛

When 𝑞 𝒛 = 𝑝𝜃 𝒛 𝒙 :

log 𝑝𝜃(𝒙|𝜽) = 𝔼𝑝𝜃(𝒛|𝒙) log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑝𝜃(𝒛|𝒙) log 𝑝𝜃 𝒛 𝒙 = 𝑬𝑳𝑩𝑶
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Variational inference

When the posterior 𝑝𝜃 𝒛 𝒙 is easy to compute, we can learn the 

model by maximizing 

1

𝑚
෍

𝒙∈𝑫

log 𝑝𝜃(𝒙) =
1

𝑚
෍

𝒙∈𝑫

𝔼𝑝𝜃 𝒛 𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑝𝜃 𝒛 𝒙 log 𝑝𝜃 𝒛 𝒙

 E.g., for the case of GMM

What if the posterior 𝑝𝜃 𝒛 𝒙 is intractable to compute?

Variational inference (VI):

 choose a family of simple distributions 𝑞𝜑(𝒛), 

parameterized by 𝜑 (variational parameters) 

 then find 𝜑∗ so that 𝑞𝜑∗(𝒛) is as close as 

possible to 𝑝𝜃 𝒛 𝒙
𝑞𝜑

𝑝𝜃



36
VI and KL

Maximize the ELBO 

1

𝑚
෍

𝑖=1

𝑚

𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖, 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

given a training set D = {x1, x2, …, xm}

Maximizing ELBO is equivalent to Minimizing KL, due to

log 𝑝𝜃(𝒙) = 𝐸𝐿𝐵𝑂 + 𝐾𝐿(𝑞𝜑 𝒛 ||𝑝𝜃 𝒛 𝒙 )

Jointly optimize over

 𝜑1, … , 𝜑𝑚 (variational parameters)

 𝜃 (model parameters) 
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VI: some properties

Pros:

 Easy to be used in a large class of models

 Efficient in practice

Cons:

Hard to choose a good variational family

 When we do not know the explicit form for the posterior 𝑝𝜃 𝒛 𝒙

 For inference, given model param 𝜃 and instance 𝒙, we estimate the 

posterior 𝑝𝜃 𝒛 𝒙 by solving an optimization problem: 

max
𝜑

 𝔼𝑞𝜑 𝒛 log 𝑝𝜃 𝒙, 𝒛 𝜽 − 𝔼𝑞𝜑 𝒛 log 𝑞𝜑 𝒛

 Require too many variational parameters

 Each instance xi requires one specific 𝜑𝑖 ➔ O(m) parameters

 GMM needs O(mKn2) params, where K is #components, n is #dims

 Variational inference (VI):

 choose a family of simple

distributions 𝑞𝜑(𝒛), 

parameterized by 𝜑

 find 𝜑∗ so that 𝑞𝜑∗(𝒛) is as 

close as possible to 𝑝𝜃 𝒛 𝒙

Expensive
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Amortized inference

max
𝜃

1

𝑚
෍

𝒙∈𝑫

log 𝑝𝜃(𝒙) ≥ max
𝜃,𝜑1,…,𝜑𝑚

1

𝑚
෍

𝒙𝑖∈𝑫

L 𝒙𝑖; 𝜃, 𝜑

 Where L 𝒙𝑖 ; 𝜃, 𝜑 = 𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖 , 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

VI uses 𝜑𝑖 for each point xi.

May not scale well with large datasets; prone to overfitting

Amortization: we learn a single neural network 𝑓𝑤: 𝒙 ⟼ 𝜑 that 

maps each input x to a set of (good) variational parameters

 𝑓𝑤 has a trainable parameter w

 For a given input xi, 𝑓𝑤 will produce the parameter 𝜑𝑖 = 𝑓𝑤(𝒙𝑖) of the 

variational distribution 𝑞𝜑𝑖
𝒛

Amortized inference: feed instance x to the trained network to 

get the variational parameter 𝜑 = 𝑓𝑤(𝒙)

No optimization ➔ cheap Kingma, D. P. & Welling, M. (2014). 
Auto-Encoding Variational Bayes. ICLR.
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Learning with amortized inference

We can use using stochastic gradient descent to solve 

max
𝜃,𝜑1,…,𝜑𝑚

෍

𝒙𝑖∈𝑫

L 𝒙𝑖; 𝜃, 𝜑

 Initialize 𝜃 0 , 𝜑(0)

At iteration 𝑗 ≥ 1:

 Randomly sample a data point xi from D

Compute 𝛻𝜃𝐿 𝒙𝑖; 𝜃 𝑗−1 , 𝜑(𝑗−1)  and 𝛻𝜑𝐿 𝒙𝑖; 𝜃 𝑗−1 , 𝜑(𝑗−1)

Update 𝜃 𝑗 , 𝜑(𝑗) in the gradient direction

How to compute the gradients?

 L 𝒙𝑖; 𝜃, 𝜑 = 𝔼𝑞𝜑𝑖
𝒛 log 𝑝𝜃 𝒙𝑖, 𝒛 𝜽 − 𝔼𝑞𝜑𝑖

𝒛 log 𝑞𝜑𝑖
𝒛

 The expectation complicates gradient computation for 𝜑
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Reparameterization trick

Consider z being continuous, and we want to compute a gradient 

with respect to 𝜑 of

𝔼𝑞𝜑 𝒛 𝑟 𝒛 = න 𝑞𝜑 𝒛 𝑟 𝒛 𝑑𝒛

 Suppose 𝑞𝜑 𝒛 = 𝒩(𝝁, 𝜎2𝑰) is Gaussian with parameters 𝜑 = (𝝁, 𝜎)

 Since 𝒛~𝑞𝜑 𝒛 , there exists representation 𝒛 = 𝝁 + 𝜎𝝐 where 𝝐~𝒩(0, 𝑰)

We can write

𝔼𝒛~𝑞𝜑 𝒛 𝑟 𝒛 = 𝔼𝝐~𝒩 (0,𝑰) 𝑟 𝝁 + 𝜎𝝐

𝛻𝜑𝔼𝑞𝜑 𝒛 𝑟 𝒛 = 𝛻𝜑𝔼𝝐 𝑟 𝝁 + 𝜎𝝐 = 𝔼𝝐 𝛻𝜑𝑟 𝝁 + 𝜎𝝐

Easy to estimate via Monte Carlo if r is differentiable w.r.t. 𝜑, 

since 𝝐 is easy to sample 

 𝔼𝝐 𝛻𝜑𝑟 𝝁 + 𝜎𝝐  ≈
1

𝐾
σ𝑗=1

𝐾 𝛻𝜑𝑟 𝝁 + 𝜎𝝐𝑗 , where 𝝐1, … , 𝝐𝐾~𝒩(0, 𝑰)
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Variational auto-encoder (VAE)

Since 𝑞𝜑 𝒛 approximates the posterior 𝑝𝜃 𝒛 𝒙 , we can write it as 

𝑞𝜑 𝒛|𝒙 and 

L 𝒙; 𝜃, 𝜑 = 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜃 − 𝔼𝑞𝜑 𝒛|𝒙 log 𝑞𝜑 𝒛|𝒙

= 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙, 𝒛 𝜃 − log 𝑝𝜃 𝒛 + log 𝑝𝜃 𝒛 − log 𝑞𝜑 𝒛|𝒙

= 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙 𝒛 − 𝐾𝐿(𝑞𝜑 𝒛|𝒙 ||𝑝𝜃 𝒛 )

Maximize L: maximize 𝑝𝜃 𝒙 𝒛 and push 𝑞𝜑 𝒛|𝒙 close to 𝑝𝜃 𝒛

Encoder: 

Maps each data point 𝒙 to a latent vector ො𝒛, a sample from a Gaussian 

(𝑞𝜑 𝒛|𝒙 ) with parameter 𝜇, 𝜎 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝜑(𝒙)

Decoder: 

 Reconstruct ෝ𝒙 from a latent vector ො𝒛, i.e., pick a sample from a 

Gaussian (𝑝𝜃 𝒙 ො𝒛 ) with parameter 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝜃(ො𝒛)

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR.
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VAE

L 𝒙; 𝜃, 𝜑 = 𝔼𝑞𝜑 𝒛|𝒙 log 𝑝𝜃 𝒙 𝒛 − 𝐾𝐿(𝑞𝜑 𝒛|𝒙  ||𝑝𝜃 𝒛 )

Maximizing L: 

 The first term encourages accurate reconstruction ෝ𝒙 ≈ 𝒙

 The KL term encourages ො𝒛 to have a distribution similar to the prior 𝑝𝜃 𝒛

Training: SGD + reparameterization trick 

Image from 

Stefano Ermon 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝜃𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝜑
ො𝒛𝒙 ෝ𝒙

𝑞𝜑 𝒛|𝒙 𝑝𝜃 𝒙 𝒛𝑝𝜃(𝒙)
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VAE: some properties

Pros:

 Efficient inference

 Flexible and expressive (Universal approximator)

Good diversity of the synthetic samples

Cons:

 Blur images VAE (2014)

VQ-VAE (2017)
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Adversarial Networks
Introduction

44

(Adapted from a lecture by Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan, UC Berkeley, 2020)
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min
𝐺

max
𝐷

𝔼𝒙~𝑝𝑑𝑎𝑡𝑎
log 𝐷 𝒙 + 𝔼𝒛~𝑝 𝒛 log 1 − 𝐷 𝐺 𝒛

❑ Two player minimax game between generator (G) and discriminator (D)

❑ D tries to maximize the log-likehood for the binary classification 

problem (D cố gắng cực đại hoá hàm log-likehood của bài toán phân loại nhị phân)

❖ Data: real (1)

❖ Generated: fake (0)

❑ G tries to minimize the log-probability of its samples being classified as 

“fake” by the discriminator D

(G cố gắng cực tiểu hoá xác suất để D phân loại chính xác các mẫu dữ liệu do G tạo ra)
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Figure from NeurIPS 2016 

GAN Tutorial (Goodfellow)



47Representation for the players

❑ D and G can be represented as two neural networks

❑ Discriminator:

𝐷 𝒙 = 𝑁𝑁(𝒙; 𝜃𝑑)

❖ 𝜃𝑑 is the weight of the neural network which takes a sample x as input.

❖ Output is a value in [0, 1].

(biểu diễn D bằng một mạng nơron với trọng số 𝜃𝑑, với  đầu vào x thì trả về 

một giá trị thuộc [0, 1])

❑ Generator:

𝐺 𝒛 = 𝑁𝑁(𝒛; 𝜃𝑔)

❖ 𝜃𝑔 is the weight of the neural network which takes a noise z as input.

❖ z often follows a simple distribution, and is of low dimensionality.

❖ Output is a fake sample 𝒙 = 𝐺 𝒛 .
(biểu diễn G bằng một mạng nơron với trọng số 𝜃𝑔, với  đầu vào z thì trả về 

một mẫu dữ liệu x)



48GANs: pseudocode for training

[Goodfellow et al., NeurIPS 2014]

D

G



49GAN

❑ See it in action: http://poloclub.github.io/ganlab/

http://poloclub.github.io/ganlab/


50GAN samples from 2014

Figure from [Goodfellow et al., NeurIPS 2014]



51Generative Adversarial Networks

❑ Key pieces of GAN

❖ Fast sampling

❖ No inference

❖ Notion of optimizing directly for what you care about 

– perceptual samples



52GAN: Bayes optimal discriminator

❑ What’s the optimal discriminator given generated and true distributions?

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log 𝐷 𝑥 + 𝔼𝑧~𝑝 𝑧 log 1 − 𝐷 𝐺 𝑧

             = ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 𝑑𝑥 + ∫
𝑧

 𝑝 𝑧 log 1 − 𝐷 𝐺 𝑧 𝑑𝑧

                       =  ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 𝑑𝑥 + ∫
𝑥

 𝑝𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

                       = ∫
𝑥

 𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 +  𝑝𝑔 𝑥 log 1 − 𝐷 𝑥  𝑑𝑥   

 ∇𝑦 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 = 0 ⟹ 𝑦∗ =
𝑎

𝑎 + 𝑏
 ∀ (𝑎, 𝑏)  ∈  ℝ2\(0,0)

    ⟹ 𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  +𝑝𝑔 𝑥



53GAN: Bayes optimal discriminator

[Figure Source: Goodfellow 

NeurIPS 2016 Tutorial on GANs]

Discriminator
Data distribution

Model / 
Generator 
distribution
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Generator Objective under Optimal Discriminator

𝑉 𝐺, 𝐷∗ = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log 𝐷∗ 𝑥 + 𝔼𝑧~𝑝𝑔

log 1 − 𝐷∗ 𝑥  

            = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
log

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  + 𝑝𝑔 𝑥
 +𝔼𝑧~𝑝𝑔

log
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥  + 𝑝𝑔 𝑥

            = − log 4 + 𝐾𝐿 𝑝𝑑𝑎𝑡𝑎 ∥
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
+ 𝐾𝐿 𝑝𝑔 ∥

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2

Jensen−Shannon Divergence JSD  of 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔  ≥ 0

 (𝐾𝐿(p||q) is the  Kullback-Leibler divergence between p and q)

𝑉 𝐺∗, 𝐷∗ = − log 4  when 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

❑ Given the Bayes-optimal D*, solving for G is equivalent to minimizing the 

JSD divergence between pdata and pg



55Behaviors across divergence measures

[“A note on the evaluation of generative models”  -- Theis, Van den Oord, Bethge 2015]



56KL and JSD

For given 𝑝(𝑥), find 𝑞∗(𝑥) that minimizes the divergence between them
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Mode covering vs Mode seeking: Tradeoffs

❑ For compression, one would prefer to ensure all points in the data 

distribution are assigned probability mass. 

❑ For generating good samples, blurring across modes spoils 

perceptual quality because regions outside the data manifold are 

assigned non-zero probability mass. 

❑ Picking one mode without assigning probability mass on points 

outside can produce “better-looking” samples. 

❑ Caveat: More expressive density models can place probability mass 

more accurately. 



58Mode Collapse

Standard GAN training collapses when the true distribution is a 

mixture of gaussians (Figure from Metz et al 2016) 
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More?

 Diffusion models

 …

Xiao, Z., Kreis, K., & Vahdat, A. Tackling the Generative 
Learning Trilemma with Denoising Diffusion GANs. In ICLR, 2022.



Thank you
Contact: 

khoattq@soict.hust.edu.vn
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