Aligning with Human Preferences: Methods and Challenges

Thanh H. Nguyen Assistant Professor, University of Oregon

Overview

- Large language models (e.g., GPT):
 - Pre-trained on a vast textual corpus to predict subsequent tokens.
 - Equip LLMs with world knowledge
 - Facilitate the generation of coherent and influent text in response to various input

Limitations

- Not always adept at interpreting a wide range of instructions
- Can produce biased/toxic content or invent facts

Recent research:

Empowering LLM to understand instructions and align with human expectations

Reinforcement Learning From Human Feedback

Thanh H. Nguyen Ouyang et al. "Training language models to follow instructions with human feedback." NeurIPS 2022.

RLHF: Overview

Step 1

Collect demonstration data, and train a supervised policy.

Thanh H. Nguyen

RLHF: Overview

Step 1 Collect demonstration data, and train a supervised policy. A prompt is 3 sampled from our Explain the moon prompt dataset. landing to a 6 year old A labeler demonstrates the desired output behavior. Some people went to the moon... This data is used SFT to fine-tune GPT-3 with supervised learning. BBB

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

to train our reward model.

This data is used

 \bigcirc Explain the moon landing to a 6 year old B Explain war. D People went to the moon... D>C>A=B

D > C > A = B

Thanh H. Nguyen

RLHF: Overview

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Some people went to the moon...

SFT

BBB

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

to train our

3

Explain the moon

landing to a 6 year old

B

A

D>G>A=B

Optimize a policy against the reward model using

reinforcement learning.

Step 3

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model

calculates a

reward for

the output.

the policy using PPO.

The reward is

used to update

RLHF: Train a Supervised Policy from Demonstration Data

Step 1 Step 2 Step 3 Collect demonstration data, Collect comparison data, **Optimize a policy against** and train a supervised policy. and train a reward model. the reward model using reinforcement learning. A prompt is A prompt and A new prompt 3 3 sampled from our several model is sampled from Explain the moon Explain the moon prompt dataset. the dataset. landing to a 6 year old outputs are landing to a 6 year old sampled. A B The policy Explain gravity. Explain war A labeler generates C D demonstrates the Moon is natural People went to an output. desired output satellite of. the moon. behavior. Some people went to the moon... A labeler ranks the outputs from best to worst. This data is used SFT D > C > A = BThe reward model to fine-tune GPT-3 calculates a with supervised reward for learning. This data is used the output. BBB to train our reward model. The reward is r_k used to update D > C > A = Bthe policy

Write a story about frogs Once upon a time..

using PPO.

Thanh H. Nguyen

RLHF: Train a Supervised Policy from Demonstration Data

- Firstly, hiring a team of 40 contractors to label data, based on their performance on a screening test.
- Then collecting a dataset of humanwritten demonstrations of the desired output behavior on (mostly English) prompts submitted to the OpenAI API and some labeler-written prompts,
- Use this dataset to train their supervised learning baselines.

Step 1

Collect demonstration data. and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

SFT

 \mathbf{O} Some people went to the moon ...

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

D > C > A = BThis data is used to train our reward model.

D > C > A = B

3

Explain the moon

landing to a 6 year old

A

Explain gravity.

C

Moon is natural

satellite of

B

Explain war.

D

People went to

the moon.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model

calculates a

reward for

the output.

the policy using PPO.

The reward is

used to update

Write a story about frogs Once upon a time..

-

- Collect a dataset of humanlabeled comparisons between outputs from OpenAI's models on a larger set of API prompts.
- And then train a reward model (RM) on this dataset to predict which model output their labelers would prefer.

• Feedback comes as preferences over model samples:

 $\mathcal{D} = \{x^{i}, y^{i}_{w}, y^{i}_{l}\}$ Prompt Dis-preferred response
Preferred response

Bradley-Terry model connects rewards to preferences

Sigmoid function

$$p(y_w \succ y_l) = \sigma(r(x, y_w) - r(x, y_l)) = \frac{\exp[r(x, y_w)]}{\exp[r(x, y_w)] + \exp[r(x, y_l)]}$$

Rewards assigned to preferred and dis-preferred responses

Bradley-Terry Model connects rewards to preferences

$$p(y_w \succ y_l) = \sigma(r(x, y_w) - r(x, y_l)) = \frac{\exp[r(x, y_w)]}{\exp[r(x, y_w)] + \exp[r(x, y_l)]}$$

Rewards assigned to preferred and dis-preferred responses

Sigmoid function

Train the reward model by minimizing negative log likelihood

$$\mathcal{L}_{R}(\phi, \mathcal{D}) = -\mathbb{E}_{(x, y_{w}, y_{l}) \sim \mathcal{D}} \left[\log \sigma \left(r_{\phi}(x, y_{w}) - r_{\phi}(x, y_{l}) \right) \right]$$

8/20/202

Step 1 Step 2 Step 3 Collect demonstration data. Collect comparison data, **Optimize a policy against** and train a reward model. the reward model using and train a supervised policy. reinforcement learning. A prompt is A prompt and A new prompt 3 3 sampled from our several model is sampled from Explain the moon Explain the moon Write a story prompt dataset. the dataset. landing to a 6 year old outputs are landing to a 6 year old about frogs sampled. B A The policy Explain gravity. Explain war. A labeler generates C D demonstrates the Moon is natural People went to an output. desired output satellite of. the moon. behavior. Some people went to the moon ... A labeler ranks Once upon a time.. the outputs from best to worst. This data is used SFT D > C > A = BThe reward model to fine-tune GPT-3 calculates a with supervised reward for learning. This data is used the output. to train our reward model. The reward is \mathbf{r}_{k} used to update D > C > A = Bthe policy

using PPU.

Thanh H. Nguyen

Background on Reinforcement Learning

- MDP setup
 - States: S
 - Actions: A
 - Transitions: P(s' | s, a) (unknown)
 - Reward function: R(s, a) (unknown)
- Goal: find an optimal policy $\pi_{\theta}(\cdot | s), \forall s$

$$\max_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

• Where
$$\tau = (s_0, a_0, s_1, a_1, \cdots)$$

Background on Reinforcement Learning

• Goal: find an optimal policy $\pi_{\theta}(\cdot | s), \forall s$

$$\max_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

• Where
$$\tau = (s_0, a_0, s_1, a_1, \cdots)$$

- Some important notions:
 - State-action value function $Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V_{\pi}(s')$
 - Value function $V_{\pi}(s) = \sum_{a} \pi(a \mid s) Q_{\pi}(s, a)$
 - Advantage function: $A_{\pi}(s, a) = Q_{\pi}(s, a) V_{\pi}(s)$

Background on Reinforcement Learning

• Goal: find an optimal policy $\pi_{\theta}(\cdot | s), \forall s$

$$\max_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

• Where
$$\tau = (s_0, a_0, s_1, a_1, \cdots)$$

Policy gradient theorem

$$\nabla J(\theta) = \mathbb{E}_{\pi_{\theta}} \big[\nabla \ln \pi_{\theta}(a \mid s) \, Q_{\pi_{\theta}}(s, a) \big]$$

- Policy optimization: gradient ascent
 - Challenge: unstable training

Thanh H. Nguyen

reward $R(s_t, a_t)$ state s_{t+1} f(t) = 0 f(t) = 0 action $a_t \sim \pi(\cdot | s_t)$

TRPO: Trust Region Policy Optimization

- Goal: improve training stability
- Policy optimization's objective:

Schulman et al. "Trust region policy optimization." In ICML, 2015.

TRPO: Trust Region Policy Optimization

- Goal: improve training stability
- Policy optimization's objective:

$$\mathbb{E}_{s \sim \rho^{\pi_{\theta_{old}}}} \Big[\mathbb{D}_{KL} \Big(\pi_{\theta_{old}} \left(\cdot \mid s \right) \big\| \pi_{\theta} \left(\cdot \mid s \right) \Big] \leq \delta$$

PPO: Proximal Policy Optimization

- Goal: simplifying TRPO
- Two primary variants
 - PPO-Penalty: penalty-based approach instead of KL constraints

$$J(\theta) = \mathbb{E}\left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} \ \hat{A}_{old}(s, a) - \beta KL\left(\pi_{\theta_{old}}(\cdot \mid s), \pi_{\theta}(\cdot \mid s)\right)\right]$$

PPO-Clipped: simplify objective using clipping function

$$J(\theta) = \mathbb{E}\left[\min\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} \ \hat{A}_{old}(s, a), clip\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}_{old}(s, a)\right)\right]$$

8/20/2024

Thanh H. Nguyen Schulman et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

 Use this RM as a reward function and fine-tune supervised learning baseline to maximize this reward using the PPO algorithm.

- Now we have a reward model r_ϕ that represents goodness according to humans
- Next, learn a policy π_{θ} achieving a high reward
- Objective

 $\max_{\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}} [r_{\phi}(x, y)]$

Sample from policy Want h

Want high rewards

- Now we have a reward model r_ϕ that represents goodness according to humans
- Next, learn a policy π_{θ} achieving a high reward while staying close to original model π_{ref}
- Objective

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}} [r_{\phi}(x, y)] - \beta \mathbb{D}_{KL} [\pi_{\theta}(y \mid x) \| \pi_{ref}(y \mid x)]$$

Sample from policy

Want high rewards

But keep KL to original model small

8/20/202

23

Evaluation

•API distribution

• Main metric is human preference ratings on a held out set of prompts from the same source as their training distribution.

Public NLP datasets

 They evaluate on two types of public datasets, which are FLAN and TO, both consist of a variety of NLP tasks. Also, conduct human evaluations of toxicity on the RealToxicityPrompts dataset

8/20/202

Metadata	Scale
Overall quality	Likert scale; 1-7
Fails to follow the correct instruction / task	Binary
Inappropriate for customer assistant	Binary
Hallucination	Binary
Satisifies constraint provided in the instruction	Binary
Contains sexual content	Binary
Contains violent content	Binary
Encourages or fails to discourage violence/abuse/terrorism/self-harm	Binary
Denigrates a protected class	Binary
Gives harmful advice	Binary
Expresses opinion	Binary
Expresses moral judgment	Binary

Table 3: Labeler-collected metadata on the API distribution.

Results

•API distribution

- Labelers significantly prefer InstructGPT outputs over outputs from GPT-3
- Generalizing to the preferences of "held-out" labelers
- Public NLP datasets are not reflective of how their language models are used

Public NLP datasets

- Showing improvements in truthfulness over GPT-3
- Showing small improvements in toxicity over GPT-3, but not bias
- Minimizing performance regressions on public NLP datasets by modifying their RLHF fine-tuning procedure

8/20/202

Preference Results

Metadata results on the API Distribution

Results on Truthful Dataset

8/20/2024

Thanh H. Nguyen

Results on RealToxicityPrompts Dataset

Some Extension of RLHF

Thanh H. Nguyen

Human Alignment: Preference Ranking Optimization

Different Supervised Finetuning Paradigms

Thanh H. Nguyen

Song et al. "Preference ranking optimization for human alignment." In AAAI. 2024.

32

Human Alignment: Preference Ranking Optimization (PRO)

• From RLHF to PRO

Convert listwise ranking to pairwise ranking

$$y_1 > y_2 > \dots > y_n$$

 $y_1 > \{y_2, \cdots, y_n\}$

$$\mathcal{L}(y_1 \succ \{y_2, \cdots, y_n\}) = -\log \frac{\exp(r_{\pi}(x, y^1))}{\sum_{i=1}^n \exp(r_{\pi}(x, y^i))}$$

InfoNCE loss

• Issue: Does not fully leverage the ranking

Human Alignment: Preference Ranking Optimization (PRO)

The pipeline of PRO for Human Feedback Alignment learning

Human Alignment: Preference Ranking Optimization (PRO)

The pipeline of PRO for Human Feedback Alignment learning

$$\mathcal{L}(y_1 > y_2 > \dots > y_n) = -\log \prod_{k=1}^{n-1} \frac{\exp(r(x, y_k))}{\sum_{i=k}^n \exp(r(x, y_i))}$$

Thanh H. Nguyen

Thanh H. Nguyen Rafailov et al. "Direct preference optimization: Your language model is secretly a reward model." NeurIPS 2024)./20/2024

RLHF Objective:
 get high reward, stay close
 to reference model

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} [r(x, y)] - \beta \mathbb{D}_{KL} \left[\pi(y \mid x) \| \pi_{ref}(y \mid x) \right]$$

Any roward functions

• There is a closed-form solution of the above optimization

 RLHF Objective:
 get high reward, stay close to reference model

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} [r(x, y)] - \beta \mathbb{D}_{KL} [\pi(y \mid x) \| \pi_{ref}(y \mid x)]$$

Any roward functions

Closed-form Optimal Policy:

write optimal policy as function of reward function

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x,y)\right)$$

with $Z(x) = \sum_y \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x,y)\right)$

intractable sum over possible response

• Closed-form Optimal Policy:

write optimal policy as function of reward function

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

with
$$Z(x) = \sum_{y} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

intractable sum over possible response

• Rearrange:

ratio is positive if policy likes response more than reference model; negative if otherwise.

$$r(x, y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$

Some parameterization of a reward function

Direct Preference Optimization: Putting It Together

A loss function on reward functions

A transformation between reward functions and policy derived from the Bradley-Terry model of human preferences

$$\mathcal{L}_{R}(r,\mathcal{D}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}}\left[\log\sigma\left(r(x,y_{w}) - r(x,y_{l})\right)\right]$$

$$r(x, y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$

Reward of

When substituting, the log Z term cancels, because the loss only care about difference in rewards

Reward of

A loss function on $\mathcal{L}_{DPO}(\pi_{\theta}; \pi_{ref})$ policy

$$-\mathbb{E}_{(x,y_{w}|y_{l})\sim\mathcal{D}}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(y_{w}|x)}{\pi_{ref}(y_{w}|x)}-\beta\log\frac{\pi_{\theta}(y_{l}|x)}{\pi_{ref}(y_{l}|x)}\right)\right]$$

Results

Three tasks

- Controlled sentiment generation (IMDb dataset)
- Summarization (Reddit dataset)
- Single-turn dialogue (Anthropic Helpful and Harmless dialogue dataset)

Evaluation

Controlled sentiment generation: pre-trained sentiment classifier (rewards)

8/20/202

- Win rates against a baseline policy
 - Use GPT-4 as a proxy for human evaluation of summary quality and response helpfulness
 - Summarization: reference summaries in the test set as baseline
 - Dialog: preferred response in test dataset as baseline

How Efficiently does DPO Trade off Reward & KL?

- 1. Generate positive IMDB reviews from GPT2-XL
- 2. Use pre-trained sentiment classifier as Gold RM
- 3. Create preferences based on Gold RM
- 4. Optimize with PPO and DPO

DPO vs PPO: Empirics

- 1. DPO is trained only on the Reddit TL;DR feedback data.
- 2. PPO uses a trained reward function and additional prompts for RL training.
- 3. We evaluate the trained policies on OOD CNN/DailyMail news summarization task.

80

Thanh H. Nguyen

DPO: Summary

• DPO optimizes the same classical RLHF objective

• Is simple and computationally cheap

• Like classical RLHF it is prone to hacking

DPO: Reward Hacking Issue

Length

Thanh H. Nguyen Park et al. "Disentangling length from quality in direct preference optimization." arXiv preprint arXiv:2403.19159 (2024).

Length Regularization in DPO

Thanh H. Nguyen Park et al. "Disentangling length from quality in direct preference optimization." arXiv preprint arXiv:2403.19159 (2024).

with $Z(x) = \sum_{i=1}^{n} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}(r(x, y) - \alpha |y|)\right)$

Length Regularization in DPO

Closed-form Optimal Policy:

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}(r(x, y) - \alpha |y|)\right)$$

with $Z(x) = \sum_y \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}(r(x, y) - \alpha |y|)\right)$

• Rearrange:

ratio is positive if policy likes response more than reference model; negative if otherwise.

$$r(x, y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x) - \alpha |y|$$

Some parameterization of a reward function

DPO with Regularization: Putting It Together

derived from the Bradley-Terry model of human preferences

$$\mathcal{L}_{R}(r,\mathcal{D}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}}\left[\log\sigma\left(r(x,y_{w}) - r(x,y_{l})\right)\right]$$

A transformation between reward functions and policy

 $\mathcal{L}_{DPO-R}(\pi_{\theta};\pi_{ref})$

A loss function on

reward functions

 $r(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x) - \alpha |y|$ When substituting, the log Z term cancels, because the loss only care about difference in rewards **Reward of Reward of** A loss function on policy dis-preferred preferred response response $= -\mathbb{E}_{(x,y_w | y_l) \sim \mathcal{D}} \left[\log \sigma \left(\left(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{ref}(y_w | x)} - \alpha | y_w | \right) - \left(\beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{ref}(y_l | x)} - \alpha | y_l | \right) \right) \right]$

Summary

- LLMs with human feedback
 - Goal: align LLM responses with human preferences
 - RLHF: two stages of reward modeling and policy learning
 - DPO: end-to-end policy learning
 - Variants:
 - Listwise rankings versus pairwise rankings
 - Length regularization
- Future works
 - Generalizability of LLM alignment
 - LLM alignment for non-English languages
 - Human-in-the-loop factors

