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Overview
= Large language models (e.g., GPT):

= Pre-trained on a vast textual corpus to predict subsequent tokens.
= Equip LLMs with world knowledge

= Facilitate the generation of coherent and influent text in response to
various Input

= Limitations
= Not always adept at interpreting a wide range of instructions
= Can produce biased/toxic content or invent facts

» Recent research:

= Empowering LLLM to understand instructions and align with human
expectations
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Reinforcement Learning From Human Feedback

Thanh H. Nguyen Ouyang et al. "Training language models to follow instructions with human feedback." NeurlPS 2022. 8/20/2024 @



https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
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RLHF: Train a Supervised Policy from
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RLHF: Train a Supervised Policy from
Demonstration Data

= Firstly, hiring a team of 40 contractors S - : :
. upervised Fine-tunin
to label data, based on their P 5
performance on a screening test. bromots & Text Dataset Train Language Model
e N\

Initial Language Model

= Then collecting a dataset of human-
written demonstrations of the desired
output behavior on (mostly English)

WV

prompts submitted to the OpenAI API : S— o
and some labeler-written prompts,

= Use this dataset to train their P ——
supervised learning baselines. e
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https://huggingface.co/blog/rlhf

RLHF: Learning a Reward Model from
Human Feedback
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RLHF: Learning a Reward Model from
Human Feedback

= Collect a dataset of human- romote Dot
labeled comparisons between T—
outputs from OpenAl's models on e
a larger set of API prompts. | 5 8ie e T
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\ v,

Sample many prompts
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Outputs are ranked
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https://huggingface.co/blog/rlhf

RLHF: Learning a Reward Model from
Human Feedback

= Feedback comes as preferences over model samples:

— Ll K, L

D =x |r Ywh» yl

el f N

Prompt Dis-preferred response
Preferred response

= Bradley-Terry model connects rewards to preferences

Sigmoid function

i ) explr(x, yi)]
PG > 1) = a(r<x;\;vW> - r<’;yl>) = explr G 1)1 + explr (6, )]

Rewards assigned to preferred and dis-preferred responses
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RLHF: Learning a Reward Model from
Human Feedback

= Bradley-Terry Model connects rewards to preferences

Sigmoid function

B l B eXp[T(x» yw)]
PG > 1) = a(r(x&yw - ’"@C/’yl)) = explr (o, y)] + explr(x, 7))

Rewards assigned to preferred and dis-preferred responses

=Train the reward model by minimizing negative log likelihood

Lp(d,D) = _[E(x,yw,yz%ﬂ lloga (rq,, (x, yw) — Ty (x, Yz))]
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RLHF: Learning a Policy that Optimize
the Reward
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Background on Reinforcement Learning

= MDP setup
= States: S
= Actions: A

= Transitions: P(s’ | s,a) (unknown)

= Reward function: R(s,a) (unknown)

= Goal: find an optimal policy my(:| 5), Vs

action
L. ag ~ T[(l St)

rneaX](H) — IET~7T9

z yir(se ag)
Lt=0 i

- Where T = (So, Ay, S1, A4, "‘)

Thanh H. Nguyen
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Background on Reinforcement Learning

= Goal: find an optimal policy my(:] s),Vs reward R(sy, ac)emmy
state Sy41 w! <
_ t o
max /() = Eeg, | > ¥'r(se, )
Lt=0 i pomsmnn-
T
— >, _M_J‘ action
= Where 7 = (so,aq, S1,a4,) N o i

= Some 1mportant notions:
= State-action value function Q,(s,a) = R(s,a) + y X, P(s' | 5,a)V(s")

= Value function V,(s) = ,n(a | s) Q,(s,a)

= Advantage function: 4,.(s,a) = Q,(s,a) — V,(s)
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Background on Reinforcement Learning

= Goal: find an optimal policy mg(:| s),Vs reward R(sp, ar) ey
state s;,; CE.J <
_ t o
max /() = Eeg, | > ¥'r(se, )
-t=0 -
| E
. g (ﬁg‘ ' action
= Where 7 = (sy,aq,S1,a4,) : :

= Policy gradient theorem

Vj(0) = Ep, [VInmy(al s) Qr, (s, )l

= Policy optimization: gradient ascent
= Challenge: unstable training
8/20/2024 @
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TRPO:
Trust Region Policy Optimization

= Goal: improve training stability

= Policy optimization’s objective:

mglals) .
) =E = A ,
/6 s~p Pold,a~mg,, [ﬂgold (als) \ ota (8 a)]
\ o

| Estimated advantage

Important sampling

x~p[f(x) = Ex-q [f( )P( a

q(x)

Thanh H. Nguyen Schulman et al. "Trust region policy optimization." In ICML, 2015, 8/20/2024 @



https://arxiv.org/pdf/1502.05477

TRPO:
Trust Region Policy Optimization

= Goal: improve training stability

= Policy optimization’s objective:

mglals) .
0) =LFE A S, a
]( ) S~pneold,a~ﬂeold Q9,4 (Cl | S) \ Old( )
\ J
| Estimated advantage

. . ) Important sampling
= Subject to KL divergence constraint:

IESNPRQO[d [[D)KL(ﬂeold Cl)mgCls))] <6
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PPO: Proximal Policy Optimization
= Goal: sitmplifying TRPO

=Two primary variants
= PPO-Penalty: penalty-based approach instead of KL constraints

| )
nZic(zCza ISZ) Apia (s,a) — BKL (”HOzd (1's),mq (-] S))]

=]

= PPO-Clipped: simplify objective using clipping function

J(6) =E [min( mo(als) Aoy (s,0), clip< (@ ls) 1—¢1+ E> Ay (s, a))]

0,14 (als) 06,14 (als)’

Thanh H. Nguyen Schulman et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017). 8/20/2024 @



https://arxiv.org/pdf/1707.06347

RLHF: Learning a Policy that Optimize

the Reward

= Use this RM as a reward
function and fine-tune
supervised learning baseline to
maximize this reward using

the PPO algorithm.

Thanh H. Nguyen

Prompts Dataset

x: A dog is...
™\ (" Tuned Language A
Initial Language Model Model (RL Policy)
\ O: O: \ Reinforcement Learning
{ 8» O\ Oz-i?'; Update (e.g. PPO)
\L N
Base Text POO® RLHF P0O® Reward (Preference)
00 00 Tuned Text ®® ®® Model
y:a fun’y mammal y. man’s best friend > E § ’O/ O O re
- X0 W
\hj\k</ g ke
¥ 3 l
— kL DKL (7ppo (§]Z) || Thase(ylz)) S 4
4

KL prediction shift penalty




RLHF: Learning a Policy that Optimize
the Reward

*Now we have a reward model ry that represents goodness
according to humans

= Next, learn a policy my achieving a high reward

= Objective

max kEy.py~m, [r¢ (x, )]

Sample from policy Want high rewards

Thanh H. Nguyen 8/20/2024 @




RLHF: Learning a Policy that Optimize
the Reward

*Now we have a reward model ry that represents goodness
according to humans

= Next, learn a policy mg achieving a high reward while staying
close to original model 7,

= Objective

IT71TaX IEx~D,y~n9 [r¢(x, Y)] o ,B ]D)KL [T[H (y | x)HT[ref(y | x)]
6 /

Sample from policy Want high rewards But keep KL to original model small

Thanh H. Nguyen 8/20/2024 @




RLHF: Learning a Policy that Optimize
the Reward

() |[EEas 2 GAE
Mode * Advantage Function RL
(S, ay) ) g (aclst)
A(sp @) = Z(rA) 6p4 Tgoa (@S
* TD Error >
8c = r(se,ar) + yV(se+1) =V (st) Alse, ar)
PPO-clip Loss
e V(se) * Return
L o : ' Ry = A(sp,ap) +V(se) .
-------- @ x’
LM Loss
Pretraining Data
(x,y)| x | YuY2 s ¥r | —
a
mhL, (aclse) (S0 a0) Re
RL
Tg,.a(@elSt) 5 >
B IR Mhra (AtlSe) R, V(so)
MSE Loss

A
x Experience Buffer

User Query

Thanh H. Nguyen Zheng et al. "Secrets of RLHF in large language models parti: Ppo." arXiv preprint arXiv:2307.04964(2023).5/20/2024

(=)



https://arxiv.org/pdf/2307.04964

Evaluation
= API distribution

= Main metric is human preference ratings on a held out set of prompts from
the same source as their training distribution.

* Public NLP datasets

= They evaluate on two types of public datasets, which are FLAN and TO,
both consist of a variety of NLP tasks. Also, conduct human evaluations of
toxicity on the RealToxicityPrompts dataset

Thanh H. Nguyen 8/20/2024 @




Thanh H. Nguyen

Table 3: Labeler-collected metadata on the API distribution.

Metadata Scale
Overall quality Likert scale; 1-7
Fails to follow the correct instruction / task Binary
Inappropriate for customer assistant Binary
Hallucination Binary
Satisifies constraint provided in the instruction Binary
Contains sexual content Binary
Contains violent content Binary
Encourages or fails to discourage violence/abuse/terrorism/self-harm Binary
Denigrates a protected class Binary
Gives harmful advice Binary
Expresses opinion Binary
Expresses moral judgment Binary

8/20/2024 @




Results
= API distribution

: aabelers significantly prefer InstructGPT outputs over outputs from
PT-3

= Generalizing to the preferences of "held-out" labelers

= Public NLP datasets are not reflective of how their language models
are used

» Public NLP datasets

= Showing improvements in truthfulness over GPT-3
= Showing small improvements in toxicity over GPT-3, but not bias

* Minimizing performance regressions on public NLP datasets by
modifying their RLHF fine-tuning procedure

Thanh H. Nguyen 8/20/2024 @




Preference Results

Thanh H. Nguyen
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Metadata results on the API Distribution
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Results on Truthful Dataset
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Results on RealToxicityPrompts Dataset
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Some Extension of RLHF
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Human Alignment: Preference Ranking
Optimization

O e e e e e R R e e R e R e e e e e e R e e e e W

Different Supervised Finetuning Paradigms

Thanh H. Nguyen Song et al. "Preference ranking optimization for human alignment." In AAAI. 2024. 8/20/2024 @



https://arxiv.org/pdf/2306.17492

Human Alignment: Preference Ranking
Optimization (PRO)

= From RLHF to PRO

= Convert listwise ranking to pairwise ranking

= [ssue: Does not fully leverage the ranking

Thanh H. Nguyen

Yi>=Y2> " >Yn

)

V1 > Y2, Yn}

L1 > {y2,*,yn}) = —log

exp (1 (x, 1))

Y exp(r;(x, y))

InfoNCE loss
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Human Alignment: Preference Ranking
Optimization (PRO)

( Context R a Candidate Responses A
Human: How do T attract buﬁzr"l‘lies to m}-‘ gur'den?
Assistant: How would you like
Human: They are pretty. y
\LASSiﬂmT: LLM

%\\. E

h@@ QO@ o©® ([© ]

SFT  + r}—r + 'r*)-—*r* .t o+ *r>-r .r" 'r*_>'—*r

The pipeline of PRO for Human Feedback Alignment learning
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Human Alignment: Preference Ranking
Optimization (PRO)

( Context R a Candidate Responses A
Human: How do T attract buﬁer"l‘lies to m}-‘ gur'den?
Assistant: How would you like
Human: They are pretty. y
\LASSiﬂmT: LLM

%\\. E

h@@ QO@ o©® ([© ]

SFT  + r>—r + r>—1‘* .t o+ *r>-r " 'r*_>-—*r

The pipeline of PRO for Human Feedback Alignment learning

L1 >y2 > >yn) =~ logﬂz exr;g;(():”éf);))
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Direct Preference Optimization

Thanh H. Neuyen Rafailov et al. "Direct preference optimization: Your language model is secretly a reward model." NeurlPS 2024).5,/994 @



https://arxiv.org/pdf/2305.18290

Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem abou
the historypofjazz" ® la bel rewa rds ® thef historypofjazz" ' °
— > | — —> reward model LM policy @ —_— > | — e final LM
Yw Y ' = Yw \d =
« ® " o« ® o« ®
ference data maximum sample completions preference data :
plic e maximum
likelihood reinforcement learning likelihood
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Direct Preference Optimization

= RLHF Objective: Any reward functions
: ¥
get high reward, stay close mnaX IEx~D,y~7T [T(X, y)] — IB]D)KL [T[(y | .X') Hﬂref (y | X)]

to reference model

= There 1s a closed-form solution of the above optimization

Thanh H. Nguyen 8/20/2024 @




Direct Preference Optimization

= Deriving Closed-Form Optimal Policy:

D, (pllg) = Ey U~p [log (u;]

max Eyp,yr[r(6, )] — BDy, [ (v | 2)|[re (v 1 2).
7T(y | x) _ Z(x) = ) mper(y 1 x) eXp<—r(x,y)>
= mgx Ex-pEy-ryix [T(x, y) — B log T[ref(y | x) Z: ' p
- on(ylx) 1 ]
= —fminE, _E,, . lo —r(x,y)
.8 - x~DYBy~m(ylx) _ gnref(y | x) ,B y
. n(y | x) '
= —,anlnIExNDIEyN,T(Mx) log . —log Z(x)

= —pminEx pEy r(yx) | Dics (7 %)

70y Trer 1) exp (%r(»c, y))

1 1 |
7o) Trer v 1) exp (E r(x, y)) —logZ(x)




Direct Preference Optimization

= RLHF Objective:

get high reward, stay close
to reference model

Any reward functions

mgx [Ex~2),y~n[r(x» 5/7)] — Dk, [T[(y | x)HT[ref(y | x)]

= Closed-form Optimal Policy:

write optimal policy as
function of reward function

Thanh H. Nguyen

1
' (ylx)= 7(x )T[ref(y | x) exp(

p

1
r(x, y))

with Z(x) = ;nref(y | x) exp (%T(X; }’)>

™~

intractable sum over possible response
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Direct Preference Optimization

= Closed-form Optimal Policy: ) 1 1
write optimal policy as n (y | X) — Z( )T[ref(y | .X') eXp Er(x y)

function of reward function

with Z(x) = Zy:nref(y | x) exp (%r(x, }’)>

™~ intractable sum over possible response

= Rearrange: ratio is positive if policy likes response more

/ than reference model; negative if otherwise.

" (y | x)
Trer (| X) t BlogZ(x)
\ J

] :
Some parameterization of a reward function

Thanh H. Nguyen 8/20/2024 @
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Direct Preference Optimization: Putting
It Together

derived from the Bradley-Terry model of human preferences

A loss function on

reward functions Lr(1,D) = =E(xy,, yp~p [log a(r(x, Yw) = 1%,y l))]
A transformation o (y | x)
between reward r(x,y) = Blog 10 + BlogZ(x)
functions and policy Tref Y 11X
— When substituting, the log Z term cancels, because the loss only care about difference in rewards
= Reward of\ Reward of
. preferred dis-preferred
A loss function on LDPO (7'[9; T[Tef) response response
policy — [lcg 0 ( Blog Ow 1x) Blog " CAES )]
Coywy)~D Myef (yw | X) Myef (YI | X)
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Results

= Three tasks
= Controlled sentiment generation (IMDb dataset)
= Summarization (Reddit dataset)
= Single-turn dialogue (Anthropic Helpful and Harmless dialogue dataset)

= Evaluation
= Controlled sentiment generation: pre-trained sentiment classifier (rewards)

= Win rates against a baseline policy

= Use GPT-4 as a proxy for human evaluation of summary quality and response
helpfulness

= Summarization: reference summaries in the test set as baseline
= Dialog: preferred response in test dataset as baseline

Thanh H. Nguyen 8/20/2024 @




How Efficiently does DPO Trade off
Reward & KL?

1. Generate positive IMDB reviews IMDb Sentiment Generation

from GPTZ-XL 1.0 &
® = ° PR ® 0y o ..0
. . 0.9+ o
2. Use pre-trained sentiment w RS
o k. J
classifier as Gold RM 0.8- . e —h
ro) o o ,° »
E 0.7 A ae o e e o*
3. Create preferences based on =, 3 S SRS B B
@
GOld RM - 0.6 - o‘ o? T & : ® o® - o ’.o... ®g0
%
051 _ o J" °
. . . ® DPO (Ours) e PPO-GT (Our impl.)
4. Optlmlze Wlth PPO and DPO . e Unlikelihood e PPO-GT (TRL)
04 e PPO (Ourimpl.) e Preferred-FT
OTO 215 5t0 715 1C'0.0 121.5 15l.0 171.5 20I.O

KL(rtg|| Tref)
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DPQO vs PPO: Empirics

1. DPO 1s trained only on the Reddit

TL;DR feedback data. WP
B orPO B PPO
2. PPO uses a trained I‘eward TL;DR (t=0)
function and additional prompts
for RL training. TLDR (t=0.25)

CNN/DailyMail (t=0)

3. We evaluate the trained policies S
on OOD CNN/DailyMail news (=0.25

summarization task.

40 60 80

o
N
o
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DPO: Summary

= DPO optimizes the same classical RLHF objective
=Is simple and computationally cheap

= Like classical RLHF 1t 1s prone to hacking

Thanh H. Nguyen 8/20/2024 @




DPO: Reward Hacking Issue
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Thanh H. Neuyen Park et al. "Disentangling length from quality in direct preference optimization." arXiv preprint arXiv:2403.19159 (2024).



https://arxiv.org/pdf/2403.19159

Length Regularization in DPO

o RLHF Ob] ective: Any)eward functions
get high reward, stay close mT[aX IEx~D,y~7T9 [T(X, y)] — ﬁ]D)KL [Tl'(y I X) ”T[‘ref (y | X)]

to reference model

= RLHF objective with length regularization:
mélX IEx~2),y~n9 [r(x,y)] — al}’l — [Dgy, [T[(y | x)HT[ref(y | x)]

Length regularization

» Closed-form optimal policy

1 1
n*(y | x) — 7(x )T[ref(y | X) exp( (r(x,y) o alyl))

with Z(x) = Zy:nref(y | x) exp (E (rCx,y) — alyl))
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Length Regularization in DPO

= Closed-form Optimal Policy:

1 1
n*(y | x) = 70x )T[ref(y | x) exp( (r(x,y) — alyl))

N7

with Z(x) = z rer(y | X) exp (l (r(x,y) — a|y|)>

B
3%

= Rearrange: ratio is positive if policy likes response more

/ than reference model; negative if otherwise.

r(x,y) = flog— ffy' lxi) + Blog Z(x) — aly|

\ J
|

Some parameterization of a reward function @
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DPO with Regularization:
Putting It Together

derived from the Bradley-Terry model of human preferences

A loss function on

reward functions Lp(r,D) = —E(x,y, yl)~2>[108 9 (T(X, Yw) — 1(x, yl))]
A transformation n*(y | x)
between reward r(x,y) =P logn (v | x) + BlogZ(x) — aly]
functions and policy ref\y
— When substituting, the log Z term cancels, because the loss only care about difference in rewards
= Reward of Reward of
A loss function on pohcy preferred dis-preferred
response response

Lppo-r (7T0i T[ref)

o (W | X) e (v | x)
= —k _nllogo lo — — lo —
(X, Yw Y1) DI g ((ﬁ gnref(yw ) Iywl) (ﬁ gnref(yl ) |y
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Summary
= LLMs with human feedback

= Goal: align LLM responses with human preferences

= RLHF': two stages of reward modeling and policy learning
= DPO: end-to-end policy learning

= Variants:

= Listwise rankings versus pairwise rankings
= Length regularization

= Future works
= Generalizability of LLM alignment
= LLM alignment for non-English languages
= Human-in-the-loop factors
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