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From Human Capabilities to AI Capabilities
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Speech Recognition 
& Processing

Natural Language 
Comprehension

Visual Perception 
& Analytics

Thinking, Reasoning 
& Decision-making

(Sound/Acoustic) (Text/Language) (Visual) (Brain Signal)

Multimodal Learning



Multimodal Behaviors and Signals
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● Language
○ Lexicon:

■ Words
○ Syntax

■ Part-of-speech
■ Dependencies

○ Pragmatics
■ Discourse acts

● Acoustic
○ Prosody:

■ Intonation
■ Voice quality

○ Vocal expressions
■ Laughter, moans

● Visual
○ Gestures:

■ Head gestures 
■ Eye gestures 
■ Arm gestures

○ Body language
■ Body posture
■ Proxemics 

○ Eye contact:
■ Head gaze
■ Eye gaze

○ Facial expressions
■ FACS action units
■ Smile , frowning

● Touch
○ Haptics:
○ Motion

● Physiological
○ Skin conductance
○ Electrocardiogram 

● Mobile:
○ GPS location
○ Accelerometer
○ Light Sensors



What is a Modality?
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Modality  refers to the way in which something expressed or perceived 

Multimodal Learning



What is a Multimodal?
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Multimodal  refers to situations where multiple modalities are involved.

Research-oriented

Multimodal  is the scientific study of heterogeneous and interconnected data

Multimodal Learning

Connected + Interacting



Heterogeneous Modalities
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Heterogeneous: Diverse qualities, structures and representations.

Abstract modalities are more likely to be homogeneous

Multimodal Learning



Dimensions of Heterogeneity
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Connected Modalities
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Connected: Shared information that relates modalities.

Multimodal Learning



Interacting Modalities
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Interacting: process affecting each modality, creating new response

Multimodal Learning



Taxonomy of Interaction Responses - A Behavioral Science View
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Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)



Cross-modal Interaction Mechanics
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Tasks: Audio-Visual Modalities
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Tasks: Visual-Text Modalities
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Tasks: Touch-Visual Modalities
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Multimodal Emotion Recognition Task
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Multimodal Machine Learning
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Multimodal Machine Learning aims to build models that can process and 

relate information from multiple modalities.



Core Multimodal Learning Challenges
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Challenge 1: Representation
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Learning representations that reflect cross-modal interactions between 

individual elements, across different modalities.

From 

same 

element



Sub-Challenge 1a: Representation Fusion
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Learn a joint representation that models cross-modal 

interactions between individual elements of different 

modalities.



Sub-Challenge 1a: Representation Fusion
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Learn a joint representation that models cross-modal 

interactions between individual elements of different 

modalities.



Basic Fusion - Additive Interaction
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Basic Fusion - Multiplicative Interactions
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[Jayakumar et al., Multiplicative Interactions and Where to Find Them. ICLR 2020]



Tensor Fusion
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[Hou et al., Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling. NeurIPS 2019]



Mixture of Fusions

27Duc-Trong Le Multimodal Learning

[Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records, AAAI 2021]



Nonlinear Fusion
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Fusion with Heterogenous Modalities
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Heterogeneity in Noise
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How to remove noise or inferring missing modalities from noised input.



Sub-Challenge 1b: Representation Coordination
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Learn multimodally-contextualized representations that 

are coordinated through their cross-modal interactions.

Capture Heterogeneity Capture interconnections

g ~ (cosine, kernel similarity functions, … 

or contrastive loss )



Sub-Challenge 1b: Representation Coordination
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[Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML 2021]



Sub-Challenge 1c: Representation Fission
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Learning a new set of representations that reflects 

individual multimodal interactions and data clustering.



Partial Information Decomposition
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[Williams and Beer. Non-negative Decomposition of Mutual Information. 2010]



Learning Task-relevant Unique Information
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[[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy,, NeurIPS’23]



Challenge 2: Alignment
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Identifying and modeling cross-modal connections between all elements of 

multiple modalities, building from the data structure, e.g., temporal, spatial, 

hierarchical.



Sub-Challenge 2c: Contextualized Representation
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Learn representations that reflect the cross-modal 

interactions of the structured multimodal data.

(+ knowledge graphs)



Challenge 3: Reasoning
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Combining knowledge, usually through multiple inferential steps, exploiting 

multimodal alignment and problem structure



Challenge 4: Generation
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Learning a generative process to produce raw modalities that reflects 

cross-modal interactions, structure and coherence



Challenge 5: Transference
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Transfer knowledge between modalities, usually to help the target modality 

which may be noisy or with limited resources.



Challenge 6: Quantification
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Empirical and theoretical study to better understand heterogeneity, 

cross-modal interactions and the multimodal learning process.



2. Emerging Trends 
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Heterogeneity
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Challenges:

● Arbitrary tokenization between modalities

● Beyond differentiable interactions: Causal, logical, brain-inspired 

interactions, theoretical study of interactions



Multi-modality to High-modality
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Challenges:

● Non-parallel learning

● Limited Resources



Short-term to Long-term
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Challenges: Compositionality, Memory (Continual learning), Personalization



Complex Interaction
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Challenges: Multi-party, Causality, Bias/Fairness



Reliability
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Challenges:

● Robustness

● Fairness

● Interpretation



3. Applications 
in Multimodal Emotion Recognition
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Multimodal Emotion Recognition
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ML/DL Classifier

Anger 

Happiness 

Excitement 

Sadness 

Frustration 

Surprise (99%)

Fear

Visual

Audio

Text
…

Multimodal Emotion Recognition refers to the identification and understanding of 
human emotional states by combining various modalities, e.g., visual, audio, text



Multimodal Emotion Recognition in Conversations (ERC)
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Source: Refashioning Emotion Recognition Modelling: The Advent of Generalised Large Models

Multimodal Emotion Recognition 
in Conversation refers to the 
process of understanding and 
interpreting emotions expressed in 
the context of conversations using 
multiple modes of communication

https://arxiv.org/abs/2308.11578


Multimodal Learning for ERC
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Source: MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation

Main idea: Seek to exploit modalities separately and/or jointly to enhance the multimodal 
representation for the ERC task.

https://aclanthology.org/2021.acl-long.440.pdf


CORRECT
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[Conversation Understanding using Relational Temporal Graph 
Neural Networks with Auxiliary Cross-Modality Interaction (EMNLP 
2023, A*)]

Main idea: Exploit relational 
temporal information & pairwise 
cross-modality feature interactions.

Contextualized Representation

https://openreview.net/forum?id=2z9o8bMQNd
https://openreview.net/forum?id=2z9o8bMQNd


MI-TPA
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[MI-TPA: Integrating Multimodal Interaction and Temporal Positional Awareness for 
Enhancing Conversational Emotion Recognition, TAFFC (Q1, IF 9.8, Round 2)] 

Main idea: Exploit relational temporal 
information with positional awareness & 
multiway-multimodal feature 
interactions.

Contextualized Representation



The Presence of Imbalance Modality Learning
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The text modality quickly addresses 
the overall model performance, 
whereas the visual and audio 
modalities remain under-optimized 
throughout the training process



Ada2I
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[Ada2I: Enhancing Modality Balance for Multimodal Conversational Emotion Recognition (ACM MM 2024, A*)]

Main idea: Adaptive Feature-level 
Balancing (intra-modal) & Adaptive 
Modality-Level Balancing (inter-modal)

Quantification

https://openreview.net/pdf?id=25JCtPdJyk


SPCL
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[ Leveraging Self-Paced Curriculum Learning for Enhanced Modality 
Balance in Multimodal Conversational Emotion Recognition (NCAA, Q1, 
IF5.6, Round 2)]

Main idea: Model-agnostic, Difficulty 
Measure quantifies sample complexity 
(utterance and conversation-level) & 
Learning Scheduler adaptively regulates 
the training curriculum (easier -> 
complex)

Quantification



The Presence of Incomplete Modalities
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Recent Work dealing with Incomplete Modalities
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Mi-CGA
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Source: Mi-CGA: Cross-Modal Graph Attention Network for Robust Emotion Recognition in the Presence of Incomplete Modalities (Neurocomputing Jan 2025, Q1, IF5.5)

Main idea: Reconstruct incomplete 
multimodality & pairwise cross-modality 
feature interactions.

https://www.sciencedirect.com/science/article/abs/pii/S0925231225000141


Future Research
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● Missing or noisy modalities: Real-world scenarios often have incomplete 

or corrupted modality data (e.g., video with poor lighting)

● Emotion dynamics over time: Recognizing transitions, persistence, and 

context-dependent changes in emotions is still hard. 

● Explainability: Understanding how each modality contribute to the 

classification.



Summary
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● Foundations of Multimodal Learning 

○ What is Multimodal?

○ Multimodal Machine Learning

○ Core Research Challenges

● Emerging Trends in Multimodal Learning

● Applications in Multimodal Emotion Recognition
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